मराठी

If C O S E C X + Cot X = 11 2 , Then Tan X = - Mathematics

Advertisements
Advertisements

प्रश्न

If \[cosec x + \cot x = \frac{11}{2}\], then tan x =

 

पर्याय

  • \[\frac{21}{22}\]

     

  • \[\frac{15}{16}\]

     

  • \[\frac{44}{117}\]

     

  • \[\frac{117}{44}\]

     

MCQ

उत्तर

\[\frac{44}{117}\]

We have:

\[ cosec x + \cot x = \frac{11}{2} \left( 1 \right)\]

\[ \Rightarrow \frac{1}{cosecx + \cot x} = \frac{2}{11}\]

\[ \Rightarrow \frac{{cosec}^2 x - \cot^2 x}{cosecx + \cot x} = \frac{2}{11}\]

\[ \Rightarrow \frac{\left( cosec x + \cot x \right)\left( cosec x - \cot x \right)}{\left( cosec x + \cot x \right)} = \frac{2}{11}\]

\[ \therefore cosec A-\cot x = \frac{2}{11} \left( 2 \right)\]

Subtracting ( 2 ) from ( 1 ): 

\[2\cot x = \frac{11}{2} - \frac{2}{11}\]

\[ \Rightarrow 2\cot x = \frac{121 - 4}{22}\]

\[ \Rightarrow 2\cot x = \frac{117}{22}\]

\[ \Rightarrow \cot x = \frac{117}{44}\]

\[ \Rightarrow \frac{1}{\tan x} = \frac{117}{44}\]

\[ \Rightarrow \tan x = \frac{44}{117}\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 5: Trigonometric Functions - Exercise 5.5 [पृष्ठ ४२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 5 Trigonometric Functions
Exercise 5.5 | Q 13 | पृष्ठ ४२

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the principal and general solutions of the equation sec x = 2


If \[\sin x = \frac{a^2 - b^2}{a^2 + b^2}\], then the values of tan x, sec x and cosec x


If \[\cot x \left( 1 + \sin x \right) = 4 m \text{ and }\cot x \left( 1 - \sin x \right) = 4 n,\] \[\left( m^2 + n^2 \right)^2 = mn\]


If \[T_n = \sin^n x + \cos^n x\], prove that  \[2 T_6 - 3 T_4 + 1 = 0\]


Prove that

\[\frac{\sin(180^\circ + x) \cos(90^\circ + x) \tan(270^\circ - x) \cot(360^\circ - x)}{\sin(360^\circ - x) \cos(360^\circ + x) cosec( - x) \sin(270^\circ + x)} = 1\]

 


Prove that:
\[\sin \frac{13\pi}{3}\sin\frac{2\pi}{3} + \cos\frac{4\pi}{3}\sin\frac{13\pi}{6} = \frac{1}{2}\]


Prove that:

\[\sin\frac{10\pi}{3}\cos\frac{13\pi}{6} + \cos\frac{8\pi}{3}\sin\frac{5\pi}{6} = - 1\]

Prove that:

\[\tan\frac{5\pi}{4}\cot\frac{9\pi}{4} + \tan\frac{17\pi}{4}\cot\frac{15\pi}{4} = 0\]

 


If \[\frac{\pi}{2} < x < \pi, \text{ then }\sqrt{\frac{1 - \sin x}{1 + \sin x}} + \sqrt{\frac{1 + \sin x}{1 - \sin x}}\] is equal to


If A lies in second quadrant 3tan A + 4 = 0, then the value of 2cot A − 5cosA + sin A is equal to


If \[cosec x + \cot x = \frac{11}{2}\], then tan x =

 


If sec x + tan x = k, cos x =


If \[f\left( x \right) = \cos^2 x + \sec^2 x\], then


The value of \[\tan1^\circ \tan2^\circ \tan3^\circ . . . \tan89^\circ\] is

 

Find the general solution of the following equation:

\[\sec x = \sqrt{2}\]

Find the general solution of the following equation:

\[\sqrt{3} \sec x = 2\]

Find the general solution of the following equation:

\[\sin 2x = \frac{\sqrt{3}}{2}\]

Find the general solution of the following equation:

\[\sin 2x = \cos 3x\]

Find the general solution of the following equation:

\[\tan 3x = \cot x\]

Solve the following equation:

\[3 \cos^2 x - 2\sqrt{3} \sin x \cos x - 3 \sin^2 x = 0\]

Solve the following equation:

\[\cos x + \sin x = \cos 2x + \sin 2x\]

Solve the following equation:

\[\tan 3x + \tan x = 2\tan 2x\]

Solve the following equation:
\[\cot x + \tan x = 2\]

 


Solve the following equation:
 sin x tan x – 1 = tan x – sin x

 


Write the values of x in [0, π] for which \[\sin 2x, \frac{1}{2}\]

 and cos 2x are in A.P.


The general solution of the equation \[7 \cos^2 x + 3 \sin^2 x = 4\] is


The number of solution in [0, π/2] of the equation \[\cos 3x \tan 5x = \sin 7x\] is 


If \[e^{\sin x} - e^{- \sin x} - 4 = 0\], then x =


The solution of the equation \[\cos^2 x + \sin x + 1 = 0\] lies in the interval


The number of values of x in the interval [0, 5 π] satisfying the equation \[3 \sin^2 x - 7 \sin x + 2 = 0\] is


Find the principal solution and general solution of the following:
cot θ = `sqrt(3)`


Solve the following equations:
sin 2θ – cos 2θ – sin θ + cos θ = θ


If 2sin2θ = 3cosθ, where 0 ≤ θ ≤ 2π, then find the value of θ.


Find the general solution of the equation 5cos2θ + 7sin2θ – 6 = 0


Number of solutions of the equation tan x + sec x = 2 cosx lying in the interval [0, 2π] is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×