Advertisements
Advertisements
प्रश्न
If \[cosec x + \cot x = \frac{11}{2}\], then tan x =
पर्याय
- \[\frac{21}{22}\]
- \[\frac{15}{16}\]
- \[\frac{44}{117}\]
- \[\frac{117}{44}\]
उत्तर
We have:
\[ cosec x + \cot x = \frac{11}{2} \left( 1 \right)\]
\[ \Rightarrow \frac{1}{cosecx + \cot x} = \frac{2}{11}\]
\[ \Rightarrow \frac{{cosec}^2 x - \cot^2 x}{cosecx + \cot x} = \frac{2}{11}\]
\[ \Rightarrow \frac{\left( cosec x + \cot x \right)\left( cosec x - \cot x \right)}{\left( cosec x + \cot x \right)} = \frac{2}{11}\]
\[ \therefore cosec A-\cot x = \frac{2}{11} \left( 2 \right)\]
Subtracting ( 2 ) from ( 1 ):
\[2\cot x = \frac{11}{2} - \frac{2}{11}\]
\[ \Rightarrow 2\cot x = \frac{121 - 4}{22}\]
\[ \Rightarrow 2\cot x = \frac{117}{22}\]
\[ \Rightarrow \cot x = \frac{117}{44}\]
\[ \Rightarrow \frac{1}{\tan x} = \frac{117}{44}\]
\[ \Rightarrow \tan x = \frac{44}{117}\]
APPEARS IN
संबंधित प्रश्न
Find the principal and general solutions of the equation sec x = 2
If \[\sin x = \frac{a^2 - b^2}{a^2 + b^2}\], then the values of tan x, sec x and cosec x
If \[\cot x \left( 1 + \sin x \right) = 4 m \text{ and }\cot x \left( 1 - \sin x \right) = 4 n,\] \[\left( m^2 + n^2 \right)^2 = mn\]
If \[T_n = \sin^n x + \cos^n x\], prove that \[2 T_6 - 3 T_4 + 1 = 0\]
Prove that
Prove that:
\[\sin \frac{13\pi}{3}\sin\frac{2\pi}{3} + \cos\frac{4\pi}{3}\sin\frac{13\pi}{6} = \frac{1}{2}\]
Prove that:
Prove that:
If \[\frac{\pi}{2} < x < \pi, \text{ then }\sqrt{\frac{1 - \sin x}{1 + \sin x}} + \sqrt{\frac{1 + \sin x}{1 - \sin x}}\] is equal to
If A lies in second quadrant 3tan A + 4 = 0, then the value of 2cot A − 5cosA + sin A is equal to
If \[cosec x + \cot x = \frac{11}{2}\], then tan x =
If sec x + tan x = k, cos x =
If \[f\left( x \right) = \cos^2 x + \sec^2 x\], then
The value of \[\tan1^\circ \tan2^\circ \tan3^\circ . . . \tan89^\circ\] is
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
\[\cot x + \tan x = 2\]
Solve the following equation:
sin x tan x – 1 = tan x – sin x
Write the values of x in [0, π] for which \[\sin 2x, \frac{1}{2}\]
and cos 2x are in A.P.
The general solution of the equation \[7 \cos^2 x + 3 \sin^2 x = 4\] is
The number of solution in [0, π/2] of the equation \[\cos 3x \tan 5x = \sin 7x\] is
If \[e^{\sin x} - e^{- \sin x} - 4 = 0\], then x =
The solution of the equation \[\cos^2 x + \sin x + 1 = 0\] lies in the interval
The number of values of x in the interval [0, 5 π] satisfying the equation \[3 \sin^2 x - 7 \sin x + 2 = 0\] is
Find the principal solution and general solution of the following:
cot θ = `sqrt(3)`
Solve the following equations:
sin 2θ – cos 2θ – sin θ + cos θ = θ
If 2sin2θ = 3cosθ, where 0 ≤ θ ≤ 2π, then find the value of θ.
Find the general solution of the equation 5cos2θ + 7sin2θ – 6 = 0
Number of solutions of the equation tan x + sec x = 2 cosx lying in the interval [0, 2π] is ______.