मराठी

The General Solution of the Equation 7 Cos 2 X + 3 Sin 2 X = 4 is - Mathematics

Advertisements
Advertisements

प्रश्न

The general solution of the equation \[7 \cos^2 x + 3 \sin^2 x = 4\] is

पर्याय

  • \[x = 2 n\pi \pm \frac{\pi}{6}, n \in Z\]

     

  • \[x = 2 n\pi \pm \frac{2\pi}{3}, n \in Z\]

     

  • \[x = n\pi \pm \frac{\pi}{3}, n \in Z\]
  • none of these

MCQ
बेरीज

उत्तर

\[x = n\pi \pm \frac{\pi}{3}, n \in Z\]
Given:
\[7 \cos^2 x + 3 \sin^2 x = 4\]
\[ \Rightarrow 7 \cos^2 x + 3 (1 - \cos^2 x) = 4\]
\[ \Rightarrow 7 \cos^2 x + 3 - 3 \cos^2 x = 4\]
\[ \Rightarrow 4 \cos^2 x + 3 = 4\]
\[ \Rightarrow 4 (1 - \cos^2 x) = 3\]
\[ \Rightarrow 4 \sin^2 x = 3\]
\[ \Rightarrow \sin^2 x = \frac{3}{4}\]
\[ \Rightarrow \sin x = \frac{\sqrt{3}}{2}\]
\[ \Rightarrow \sin x = \sin \frac{\pi}{3}\]
\[ \Rightarrow x = n\pi \pm \frac{\pi}{3}, n \in Z\]
shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 11: Trigonometric equations - Exercise 11.3 [पृष्ठ २७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 11 Trigonometric equations
Exercise 11.3 | Q 5 | पृष्ठ २७

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the general solution of cosec x = –2


Find the general solution of the equation  sin x + sin 3x + sin 5x = 0


Prove that:  tan 225° cot 405° + tan 765° cot 675° = 0


Prove that

\[\frac{cosec(90^\circ + x) + \cot(450^\circ + x)}{cosec(90^\circ - x) + \tan(180^\circ - x)} + \frac{\tan(180^\circ + x) + \sec(180^\circ - x)}{\tan(360^\circ + x) - \sec( - x)} = 2\]

 


Prove that

\[\frac{\sin(180^\circ + x) \cos(90^\circ + x) \tan(270^\circ - x) \cot(360^\circ - x)}{\sin(360^\circ - x) \cos(360^\circ + x) cosec( - x) \sin(270^\circ + x)} = 1\]

 


Prove that

\[\left\{ 1 + \cot x - \sec\left( \frac{\pi}{2} + x \right) \right\}\left\{ 1 + \cot x + \sec\left( \frac{\pi}{2} + x \right) \right\} = 2\cot x\]

 


Prove that:
\[\sec\left( \frac{3\pi}{2} - x \right)\sec\left( x - \frac{5\pi}{2} \right) + \tan\left( \frac{5\pi}{2} + x \right)\tan\left( x - \frac{3\pi}{2} \right) = - 1 .\]


Prove that:
\[\tan 4\pi - \cos\frac{3\pi}{2} - \sin\frac{5\pi}{6}\cos\frac{2\pi}{3} = \frac{1}{4}\]


If \[\frac{\pi}{2} < x < \frac{3\pi}{2},\text{ then }\sqrt{\frac{1 - \sin x}{1 + \sin x}}\] is equal to

 


If tan x + sec x = \[\sqrt{3}\], 0 < x < π, then x is equal to


If \[cosec x - \cot x = \frac{1}{2}, 0 < x < \frac{\pi}{2},\]

 

Which of the following is incorrect?


Find the general solution of the following equation:

\[\tan x = - \frac{1}{\sqrt{3}}\]

Find the general solution of the following equation:

\[\sin 2x = \cos 3x\]

Find the general solution of the following equation:

\[\tan 2x \tan x = 1\]

Find the general solution of the following equation:

\[\sin x = \tan x\]

Solve the following equation:

\[2 \cos^2 x - 5 \cos x + 2 = 0\]

Solve the following equation:

\[\cos x + \cos 2x + \cos 3x = 0\]

Solve the following equation:

\[\sin x + \sin 2x + \sin 3 = 0\]

Solve the following equation:

\[\sin x + \sin 2x + \sin 3x + \sin 4x = 0\]

Solve the following equation:

\[\sin 2x - \sin 4x + \sin 6x = 0\]

Solve the following equation:
4sinx cosx + 2 sin x + 2 cosx + 1 = 0 


Write the general solutions of tan2 2x = 1.

 

Write the set of values of a for which the equation

\[\sqrt{3} \sin x - \cos x = a\] has no solution.

If \[3\tan\left( x - 15^\circ \right) = \tan\left( x + 15^\circ \right)\] \[0 < x < 90^\circ\], find θ.


The number of solution in [0, π/2] of the equation \[\cos 3x \tan 5x = \sin 7x\] is 


The smallest positive angle which satisfies the equation ​

\[2 \sin^2 x + \sqrt{3} \cos x + 1 = 0\] is

In (0, π), the number of solutions of the equation ​ \[\tan x + \tan 2x + \tan 3x = \tan x \tan 2x \tan 3x\] is 


The solution of the equation \[\cos^2 x + \sin x + 1 = 0\] lies in the interval


Find the principal solution and general solution of the following:
tan θ = `- 1/sqrt(3)`


Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°

cos 2x = 1 − 3 sin x


Choose the correct alternative:
If sin α + cos α = b, then sin 2α is equal to


Solve the equation sin θ + sin 3θ + sin 5θ = 0


If sin θ and cos θ are the roots of the equation ax2 – bx + c = 0, then a, b and c satisfy the relation ______.


If 2sin2θ = 3cosθ, where 0 ≤ θ ≤ 2π, then find the value of θ.


Find the general solution of the equation sinx – 3sin2x + sin3x = cosx – 3cos2x + cos3x


Number of solutions of the equation tan x + sec x = 2 cosx lying in the interval [0, 2π] is ______.


In a triangle ABC with ∠C = 90° the equation whose roots are tan A and tan B is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×