Advertisements
Advertisements
प्रश्न
The general solution of the equation \[7 \cos^2 x + 3 \sin^2 x = 4\] is
पर्याय
- \[x = 2 n\pi \pm \frac{\pi}{6}, n \in Z\]
- \[x = 2 n\pi \pm \frac{2\pi}{3}, n \in Z\]
- \[x = n\pi \pm \frac{\pi}{3}, n \in Z\]
none of these
उत्तर
Given:
\[7 \cos^2 x + 3 \sin^2 x = 4\]
\[ \Rightarrow 7 \cos^2 x + 3 (1 - \cos^2 x) = 4\]
\[ \Rightarrow 7 \cos^2 x + 3 - 3 \cos^2 x = 4\]
\[ \Rightarrow 4 \cos^2 x + 3 = 4\]
\[ \Rightarrow 4 (1 - \cos^2 x) = 3\]
\[ \Rightarrow 4 \sin^2 x = 3\]
\[ \Rightarrow \sin^2 x = \frac{3}{4}\]
\[ \Rightarrow \sin x = \frac{\sqrt{3}}{2}\]
\[ \Rightarrow \sin x = \sin \frac{\pi}{3}\]
\[ \Rightarrow x = n\pi \pm \frac{\pi}{3}, n \in Z\]
APPEARS IN
संबंधित प्रश्न
Find the general solution of cosec x = –2
Find the general solution of the equation sin x + sin 3x + sin 5x = 0
Prove that: tan 225° cot 405° + tan 765° cot 675° = 0
Prove that
Prove that
Prove that
Prove that:
\[\sec\left( \frac{3\pi}{2} - x \right)\sec\left( x - \frac{5\pi}{2} \right) + \tan\left( \frac{5\pi}{2} + x \right)\tan\left( x - \frac{3\pi}{2} \right) = - 1 .\]
Prove that:
\[\tan 4\pi - \cos\frac{3\pi}{2} - \sin\frac{5\pi}{6}\cos\frac{2\pi}{3} = \frac{1}{4}\]
If \[\frac{\pi}{2} < x < \frac{3\pi}{2},\text{ then }\sqrt{\frac{1 - \sin x}{1 + \sin x}}\] is equal to
If tan x + sec x = \[\sqrt{3}\], 0 < x < π, then x is equal to
If \[cosec x - \cot x = \frac{1}{2}, 0 < x < \frac{\pi}{2},\]
Which of the following is incorrect?
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
4sinx cosx + 2 sin x + 2 cosx + 1 = 0
Write the general solutions of tan2 2x = 1.
Write the set of values of a for which the equation
If \[3\tan\left( x - 15^\circ \right) = \tan\left( x + 15^\circ \right)\] \[0 < x < 90^\circ\], find θ.
The number of solution in [0, π/2] of the equation \[\cos 3x \tan 5x = \sin 7x\] is
The smallest positive angle which satisfies the equation
In (0, π), the number of solutions of the equation \[\tan x + \tan 2x + \tan 3x = \tan x \tan 2x \tan 3x\] is
The solution of the equation \[\cos^2 x + \sin x + 1 = 0\] lies in the interval
Find the principal solution and general solution of the following:
tan θ = `- 1/sqrt(3)`
Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°
cos 2x = 1 − 3 sin x
Choose the correct alternative:
If sin α + cos α = b, then sin 2α is equal to
Solve the equation sin θ + sin 3θ + sin 5θ = 0
If sin θ and cos θ are the roots of the equation ax2 – bx + c = 0, then a, b and c satisfy the relation ______.
If 2sin2θ = 3cosθ, where 0 ≤ θ ≤ 2π, then find the value of θ.
Find the general solution of the equation sinx – 3sin2x + sin3x = cosx – 3cos2x + cos3x
Number of solutions of the equation tan x + sec x = 2 cosx lying in the interval [0, 2π] is ______.
In a triangle ABC with ∠C = 90° the equation whose roots are tan A and tan B is ______.