Advertisements
Advertisements
प्रश्न
The smallest positive angle which satisfies the equation
पर्याय
- \[\frac{5\pi}{6}\]
- \[\frac{2\pi}{3}\]
- \[\frac{\pi}{3}\]
- \[\frac{\pi}{6}\]
उत्तर
\[\frac{5\pi}{6}\]
Given:
\[2 \sin^2 x + \sqrt{3}\cos x + 1 = 0\]
\[\Rightarrow 2 (1 - \cos^2 x) + \sqrt{3} \cos x + 1 = 0\]
\[ \Rightarrow 2 - 2 \cos^2 x + \sqrt{3} \cos x + 1 = 0\]
\[ \Rightarrow 2 \cos^2 x - \sqrt{3} \cos x - 3 = 0\]
\[ \Rightarrow 2 \cos^2 x - 2\sqrt{3} \cos x + \sqrt{3} \cos x - 3 = 0\]
\[ \Rightarrow 2 \cos x (\cos x - \sqrt{3}) + \sqrt{3} (\cos x - \sqrt{3}) = 0\]
\[ \Rightarrow (2 \cos x + \sqrt{3}) (\cos x - \sqrt{3}) = 0\]
\[ \Rightarrow x = 2n\pi \pm \frac{5\pi}{6} , n \in Z\]
Hence, the smallest positive angle is \[\frac{5\pi}{6}\].
APPEARS IN
संबंधित प्रश्न
Find the principal and general solutions of the equation `tan x = sqrt3`
Find the general solution of the equation cos 4 x = cos 2 x
If \[cosec x - \sin x = a^3 , \sec x - \cos x = b^3\], then prove that \[a^2 b^2 \left( a^2 + b^2 \right) = 1\]
If \[T_n = \sin^n x + \cos^n x\], prove that \[2 T_6 - 3 T_4 + 1 = 0\]
If \[T_n = \sin^n x + \cos^n x\], prove that \[6 T_{10} - 15 T_8 + 10 T_6 - 1 = 0\]
Prove that: tan (−225°) cot (−405°) −tan (−765°) cot (675°) = 0
Prove that: \[\tan\frac{11\pi}{3} - 2\sin\frac{4\pi}{6} - \frac{3}{4} {cosec}^2 \frac{\pi}{4} + 4 \cos^2 \frac{17\pi}{6} = \frac{3 - 4\sqrt{3}}{2}\]
Prove that
Prove that:
\[\sec\left( \frac{3\pi}{2} - x \right)\sec\left( x - \frac{5\pi}{2} \right) + \tan\left( \frac{5\pi}{2} + x \right)\tan\left( x - \frac{3\pi}{2} \right) = - 1 .\]
In a ∆A, B, C, D be the angles of a cyclic quadrilateral, taken in order, prove that cos(180° − A) + cos (180° + B) + cos (180° + C) − sin (90° + D) = 0
Prove that:
If \[\frac{3\pi}{4} < \alpha < \pi, \text{ then }\sqrt{2\cot \alpha + \frac{1}{\sin^2 \alpha}}\] is equal to
If \[cosec x + \cot x = \frac{11}{2}\], then tan x =
Which of the following is incorrect?
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
cosx + sin x = cos 2x + sin 2x
Write the number of solutions of the equation tan x + sec x = 2 cos x in the interval [0, 2π].
The smallest value of x satisfying the equation
If \[\cos x + \sqrt{3} \sin x = 2,\text{ then }x =\]
A solution of the equation \[\cos^2 x + \sin x + 1 = 0\], lies in the interval
If \[4 \sin^2 x = 1\], then the values of x are
A value of x satisfying \[\cos x + \sqrt{3} \sin x = 2\] is
If \[\sqrt{3} \cos x + \sin x = \sqrt{2}\] , then general value of x is
Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°
sin4x = sin2x
Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°
2 sin2x + 1 = 3 sin x
Solve the following equations:
2cos 2x – 7 cos x + 3 = 0
Choose the correct alternative:
If cos pθ + cos qθ = 0 and if p ≠ q, then θ is equal to (n is any integer)
Choose the correct alternative:
`(cos 6x + 6 cos 4x + 15cos x + 10)/(cos 5x + 5cs 3x + 10 cos x)` is equal to
Choose the correct alternative:
If sin α + cos α = b, then sin 2α is equal to
Solve the equation sin θ + sin 3θ + sin 5θ = 0
If sin θ and cos θ are the roots of the equation ax2 – bx + c = 0, then a, b and c satisfy the relation ______.
Find the general solution of the equation 5cos2θ + 7sin2θ – 6 = 0