मराठी

The Smallest Positive Angle Which Satisfies the Equation ​ 2 Sin 2 X + √ 3 Cos X + 1 = 0 is - Mathematics

Advertisements
Advertisements

प्रश्न

The smallest positive angle which satisfies the equation ​

\[2 \sin^2 x + \sqrt{3} \cos x + 1 = 0\] is

पर्याय

  • \[\frac{5\pi}{6}\]

     

  • \[\frac{2\pi}{3}\]

     

  • \[\frac{\pi}{3}\]

     

  • \[\frac{\pi}{6}\]

     

MCQ
बेरीज

उत्तर

\[\frac{5\pi}{6}\]
Given:
\[2 \sin^2 x + \sqrt{3}\cos x + 1 = 0\]
\[\Rightarrow 2 (1 - \cos^2 x) + \sqrt{3} \cos x + 1 = 0\]
\[ \Rightarrow 2 - 2 \cos^2 x + \sqrt{3} \cos x + 1 = 0\]
\[ \Rightarrow 2 \cos^2 x - \sqrt{3} \cos x - 3 = 0\]
\[ \Rightarrow 2 \cos^2 x - 2\sqrt{3} \cos x + \sqrt{3} \cos x - 3 = 0\]
\[ \Rightarrow 2 \cos x (\cos x - \sqrt{3}) + \sqrt{3} (\cos x - \sqrt{3}) = 0\]
\[ \Rightarrow (2 \cos x + \sqrt{3}) (\cos x - \sqrt{3}) = 0\]

\[\Rightarrow 2 \cos x + \sqrt{3} = 0\] or,
\[\cos x - \sqrt{3} = 0\]
∴ \[\cos x = - \frac{\sqrt{3}}{2}\] or,
\[\cos x = \sqrt{3}\] is not possible.
\[\Rightarrow \cos x = \cos\left( \frac{5\pi}{6} \right)\]
\[ \Rightarrow x = 2n\pi \pm \frac{5\pi}{6} , n \in Z\]
For n = 0, the value of \[x is \pm \frac{5\pi}{6}\].
Hence, the smallest positive angle is \[\frac{5\pi}{6}\].
shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 11: Trigonometric equations - Exercise 11.3 [पृष्ठ २७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 11 Trigonometric equations
Exercise 11.3 | Q 9 | पृष्ठ २७

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the principal and general solutions of the equation `tan x = sqrt3`


Find the general solution of the equation cos 4 x = cos 2 x


If \[cosec x - \sin x = a^3 , \sec x - \cos x = b^3\], then prove that \[a^2 b^2 \left( a^2 + b^2 \right) = 1\]


If \[T_n = \sin^n x + \cos^n x\], prove that  \[2 T_6 - 3 T_4 + 1 = 0\]


If \[T_n = \sin^n x + \cos^n x\], prove that \[6 T_{10} - 15 T_8 + 10 T_6 - 1 = 0\]


Prove that: tan (−225°) cot (−405°) −tan (−765°) cot (675°) = 0


Prove that: \[\tan\frac{11\pi}{3} - 2\sin\frac{4\pi}{6} - \frac{3}{4} {cosec}^2 \frac{\pi}{4} + 4 \cos^2 \frac{17\pi}{6} = \frac{3 - 4\sqrt{3}}{2}\]

 


Prove that

\[\frac{\tan (90^\circ - x) \sec(180^\circ - x) \sin( - x)}{\sin(180^\circ + x) \cot(360^\circ - x) cosec(90^\circ - x)} = 1\]

 


Prove that:
\[\sec\left( \frac{3\pi}{2} - x \right)\sec\left( x - \frac{5\pi}{2} \right) + \tan\left( \frac{5\pi}{2} + x \right)\tan\left( x - \frac{3\pi}{2} \right) = - 1 .\]


In a ∆A, B, C, D be the angles of a cyclic quadrilateral, taken in order, prove that cos(180° − A) + cos (180° + B) + cos (180° + C) − sin (90° + D) = 0


Prove that:

\[\sin\frac{10\pi}{3}\cos\frac{13\pi}{6} + \cos\frac{8\pi}{3}\sin\frac{5\pi}{6} = - 1\]

If \[\frac{3\pi}{4} < \alpha < \pi, \text{ then }\sqrt{2\cot \alpha + \frac{1}{\sin^2 \alpha}}\] is equal to


If \[cosec x + \cot x = \frac{11}{2}\], then tan x =

 


Which of the following is incorrect?


Find the general solution of the following equation:

\[\cos x = - \frac{\sqrt{3}}{2}\]

Find the general solution of the following equation:

\[\sin 2x = \cos 3x\]

Find the general solution of the following equation:

\[\tan 2x \tan x = 1\]

Solve the following equation:

\[\cos x + \cos 2x + \cos 3x = 0\]

Solve the following equation:

\[\sin x + \sin 5x = \sin 3x\]

Solve the following equation:
 cosx + sin x = cos 2x + sin 2x

 


Write the number of solutions of the equation tan x + sec x = 2 cos x in the interval [0, 2π].


The smallest value of x satisfying the equation

\[\sqrt{3} \left( \cot x + \tan x \right) = 4\] is 

If \[\cos x + \sqrt{3} \sin x = 2,\text{ then }x =\]

 


A solution of the equation \[\cos^2 x + \sin x + 1 = 0\], lies in the interval


If \[4 \sin^2 x = 1\], then the values of x are

 


A value of x satisfying \[\cos x + \sqrt{3} \sin x = 2\] is

 

If \[\sqrt{3} \cos x + \sin x = \sqrt{2}\] , then general value of x is


Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°

sin4x = sin2x


Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°

2 sin2x + 1 = 3 sin x


Solve the following equations:
2cos 2x – 7 cos x + 3 = 0


Choose the correct alternative:
If cos pθ + cos qθ = 0 and if p ≠ q, then θ is equal to (n is any integer)


Choose the correct alternative:
`(cos 6x + 6 cos 4x + 15cos x + 10)/(cos 5x + 5cs 3x + 10 cos x)` is equal to


Choose the correct alternative:
If sin α + cos α = b, then sin 2α is equal to


Solve the equation sin θ + sin 3θ + sin 5θ = 0


If sin θ and cos θ are the roots of the equation ax2 – bx + c = 0, then a, b and c satisfy the relation ______.


Find the general solution of the equation 5cos2θ + 7sin2θ – 6 = 0


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×