मराठी

If 4 Sin 2 X = 1 , Then the Values of X Are - Mathematics

Advertisements
Advertisements

प्रश्न

If \[4 \sin^2 x = 1\], then the values of x are

 

पर्याय

  • \[2 n\pi \pm \frac{\pi}{3}, n \in Z\]

  • \[n\pi \pm \frac{\pi}{3}, n \in Z\]

     

  • \[n\pi \pm \frac{\pi}{6}, n \in Z\]

  • \[2 n\pi \pm \frac{\pi}{6}, n \in Z\]
MCQ
बेरीज

उत्तर

\[2 n\pi \pm \frac{\pi}{6}, n \in Z\]
Given:
\[4 \sin^2 x = 1\]
\[ \Rightarrow \sin^2 x = \frac{1}{4}\]
\[ \Rightarrow \sin x = \frac{1}{2}\text{ or }\sin x = - \frac{1}{2}\]
\[ \Rightarrow \sin x = \sin \frac{\pi}{6}\text{ or }\sin x = \sin \left( - \frac{\pi}{6} \right)\]
\[ \Rightarrow x = n\pi + ( - 1 )^n \frac{\pi}{6}, n \in Z\text{ or }x = n\pi + ( - 1 )^n \left( - \frac{\pi}{6} \right), n \in Z\]
\[ \Rightarrow x = n\pi \pm \frac{\pi}{6}, n \in Z\]
shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 11: Trigonometric equations - Exercise 11.3 [पृष्ठ २७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 11 Trigonometric equations
Exercise 11.3 | Q 10 | पृष्ठ २७

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the principal and general solutions of the equation sec x = 2


Find the general solution of the equation cos 4 x = cos 2 x


Find the general solution for each of the following equations sec2 2x = 1– tan 2x


If \[T_n = \sin^n x + \cos^n x\], prove that \[\frac{T_3 - T_5}{T_1} = \frac{T_5 - T_7}{T_3}\]

 


Prove that:  tan 225° cot 405° + tan 765° cot 675° = 0


Prove that: cos 24° + cos 55° + cos 125° + cos 204° + cos 300° = \[\frac{1}{2}\]


Prove that

\[\frac{\sin(180^\circ + x) \cos(90^\circ + x) \tan(270^\circ - x) \cot(360^\circ - x)}{\sin(360^\circ - x) \cos(360^\circ + x) cosec( - x) \sin(270^\circ + x)} = 1\]

 


In a ∆ABC, prove that:

\[\cos\left( \frac{A + B}{2} \right) = \sin\frac{C}{2}\]

 


If \[\frac{\pi}{2} < x < \pi, \text{ then }\sqrt{\frac{1 - \sin x}{1 + \sin x}} + \sqrt{\frac{1 + \sin x}{1 - \sin x}}\] is equal to


If \[cosec x - \cot x = \frac{1}{2}, 0 < x < \frac{\pi}{2},\]

 

If tan θ + sec θ =ex, then cos θ equals


If sec x + tan x = k, cos x =


If \[f\left( x \right) = \cos^2 x + \sec^2 x\], then


Find the general solution of the following equation:

\[\cos x = - \frac{\sqrt{3}}{2}\]

Find the general solution of the following equation:

\[\sec x = \sqrt{2}\]

Solve the following equation:
\[\sin^2 x - \cos x = \frac{1}{4}\]


Solve the following equation:

\[\tan^2 x + \left( 1 - \sqrt{3} \right) \tan x - \sqrt{3} = 0\]

Solve the following equation:

\[\cos 4 x = \cos 2 x\]

Solve the following equation:

\[\cos x + \cos 2x + \cos 3x = 0\]

Solve the following equation:

\[\cos x + \sin x = \cos 2x + \sin 2x\]

Solve the following equation:

\[\sin 3x - \sin x = 4 \cos^2 x - 2\]

Solve the following equation:
\[\sin x + \cos x = \sqrt{2}\]


Solve the following equation:
 cosx + sin x = cos 2x + sin 2x

 


Write the number of solutions of the equation tan x + sec x = 2 cos x in the interval [0, 2π].


Write the set of values of a for which the equation

\[\sqrt{3} \sin x - \cos x = a\] has no solution.

If \[2 \sin^2 x = 3\cos x\]. where \[0 \leq x \leq 2\pi\], then find the value of x.


A solution of the equation \[\cos^2 x + \sin x + 1 = 0\], lies in the interval


The number of solution in [0, π/2] of the equation \[\cos 3x \tan 5x = \sin 7x\] is 


The general value of x satisfying the equation
\[\sqrt{3} \sin x + \cos x = \sqrt{3}\]


The number of values of ​x in [0, 2π] that satisfy the equation \[\sin^2 x - \cos x = \frac{1}{4}\]


The equation \[3 \cos x + 4 \sin x = 6\] has .... solution.


If \[\sqrt{3} \cos x + \sin x = \sqrt{2}\] , then general value of x is


The number of values of x in the interval [0, 5 π] satisfying the equation \[3 \sin^2 x - 7 \sin x + 2 = 0\] is


Solve the following equations:
sin 5x − sin x = cos 3


Solve the following equations:
2 cos2θ + 3 sin θ – 3 = θ


Number of solutions of the equation tan x + sec x = 2 cosx lying in the interval [0, 2π] is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×