Advertisements
Advertisements
प्रश्न
If \[4 \sin^2 x = 1\], then the values of x are
विकल्प
\[2 n\pi \pm \frac{\pi}{3}, n \in Z\]
- \[n\pi \pm \frac{\pi}{3}, n \in Z\]
\[n\pi \pm \frac{\pi}{6}, n \in Z\]
- \[2 n\pi \pm \frac{\pi}{6}, n \in Z\]
उत्तर
Given:
\[4 \sin^2 x = 1\]
\[ \Rightarrow \sin^2 x = \frac{1}{4}\]
\[ \Rightarrow \sin x = \frac{1}{2}\text{ or }\sin x = - \frac{1}{2}\]
\[ \Rightarrow \sin x = \sin \frac{\pi}{6}\text{ or }\sin x = \sin \left( - \frac{\pi}{6} \right)\]
\[ \Rightarrow x = n\pi + ( - 1 )^n \frac{\pi}{6}, n \in Z\text{ or }x = n\pi + ( - 1 )^n \left( - \frac{\pi}{6} \right), n \in Z\]
\[ \Rightarrow x = n\pi \pm \frac{\pi}{6}, n \in Z\]
APPEARS IN
संबंधित प्रश्न
If \[\sin x = \frac{a^2 - b^2}{a^2 + b^2}\], then the values of tan x, sec x and cosec x
If \[\tan x = \frac{b}{a}\] , then find the values of \[\sqrt{\frac{a + b}{a - b}} + \sqrt{\frac{a - b}{a + b}}\].
If \[\sin x + \cos x = m\], then prove that \[\sin^6 x + \cos^6 x = \frac{4 - 3 \left( m^2 - 1 \right)^2}{4}\], where \[m^2 \leq 2\]
Prove that: tan 225° cot 405° + tan 765° cot 675° = 0
Prove that
Prove that
In a ∆A, B, C, D be the angles of a cyclic quadrilateral, taken in order, prove that cos(180° − A) + cos (180° + B) + cos (180° + C) − sin (90° + D) = 0
If sec \[x = x + \frac{1}{4x}\], then sec x + tan x =
If tan x + sec x = \[\sqrt{3}\], 0 < x < π, then x is equal to
The value of sin25° + sin210° + sin215° + ... + sin285° + sin290° is
If A lies in second quadrant 3tan A + 4 = 0, then the value of 2cot A − 5cosA + sin A is equal to
If \[f\left( x \right) = \cos^2 x + \sec^2 x\], then
The value of \[\cos1^\circ \cos2^\circ \cos3^\circ . . . \cos179^\circ\] is
The value of \[\tan1^\circ \tan2^\circ \tan3^\circ . . . \tan89^\circ\] is
Find the general solution of the following equation:
Find the general solution of the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
\[\sin x + \cos x = \sqrt{2}\]
Solve the following equation:
4sinx cosx + 2 sin x + 2 cosx + 1 = 0
Solve the following equation:
3 – 2 cos x – 4 sin x – cos 2x + sin 2x = 0
Write the set of values of a for which the equation
Write the values of x in [0, π] for which \[\sin 2x, \frac{1}{2}\]
and cos 2x are in A.P.
If a is any real number, the number of roots of \[\cot x - \tan x = a\] in the first quadrant is (are).
The general solution of the equation \[7 \cos^2 x + 3 \sin^2 x = 4\] is
A solution of the equation \[\cos^2 x + \sin x + 1 = 0\], lies in the interval
The general value of x satisfying the equation
\[\sqrt{3} \sin x + \cos x = \sqrt{3}\]
If \[\cos x = - \frac{1}{2}\] and 0 < x < 2\pi, then the solutions are
Find the principal solution and general solution of the following:
cot θ = `sqrt(3)`
Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°
2 cos2x + 1 = – 3 cos x
Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°
2 sin2x + 1 = 3 sin x
Solve the following equations:
`sin theta + sqrt(3) cos theta` = 1
Solve the following equations:
2cos 2x – 7 cos x + 3 = 0
Choose the correct alternative:
If tan 40° = λ, then `(tan 140^circ - tan 130^circ)/(1 + tan 140^circ * tan 130^circ)` =
Solve the equation sin θ + sin 3θ + sin 5θ = 0
If a cosθ + b sinθ = m and a sinθ - b cosθ = n, then show that a2 + b2 = m2 + n2