हिंदी

If A lies in second quadrant 3tanA + 4 = 0, then the value of 2cotA − 5cosA + sinA is equal to - Mathematics

Advertisements
Advertisements

प्रश्न

If A lies in second quadrant 3tan A + 4 = 0, then the value of 2cot A − 5cosA + sin A is equal to

विकल्प

  • 5310

     

  • 2310

     

  • 3710

     

  • 710

     

MCQ

उत्तर

It is given that π2<A<π.

3tanA+4=0

tanA=43

cotA=34
Now,
secA=±1+tan2A=±1+169=±259=±53
secA=53( A lies in 2nd quadrant )
cosA=35
Also,

sinA=±1cos2A=±1925=±1625=±45

sinA=45( A lies in 2nd quadrant )

So,
2cotA5cosA+sinA
=2×(34)5×(35)+45
=32+3+45
=15+30+810
=2310

Hence, the correct answer is option B.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: Trigonometric Functions - Exercise 5.5 [पृष्ठ ४२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 5 Trigonometric Functions
Exercise 5.5 | Q 20 | पृष्ठ ४२

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the principal and general solutions of the equation tanx=3


Find the general solution of cosec x = –2


Find the general solution of the equation sin 2x + cos x = 0


Find the general solution for each of the following equations sec2 2x = 1– tan 2x


Find the general solution of the equation  sin x + sin 3x + sin 5x = 0


If tanx=ab, show that

asinxbcosxasinx+bcosx=a2b2a2+b2

If Tn=sinnx+cosnx, prove that  2T63T4+1=0


Prove that:

3sinπ6secπ34sin5π6cotπ4=1

 


Prove that

tan(90x)sec(180x)sin(x)sin(180+x)cot(360x)cosec(90x)=1

 


Prove that:
sec(3π2x)sec(x5π2)+tan(5π2+x)tan(x3π2)=1.


Prove that:
sin13π3sin8π3+cos2π3sin5π6=12


Prove that:
sin13π3sin2π3+cos4π3sin13π6=12


Prove that:

sin10π3cos13π6+cos8π3sin5π6=1

If 3π4<α<π, then 2cotα+1sin2α is equal to


If tan A + cot A = 4, then tan4 A + cot4 A is equal to


The value of tan1tan2tan3...tan89 is

 

Find the general solution of the following equation:

sin3x+cos2x=0

Solve the following equation:

sinx+sin2x+sin3=0

Solve the following equation:
cotx+tanx=2

 


Solve the following equation:
5cos2x+7sin2x6=0


Solve the following equation:
4sinx cosx + 2 sin x + 2 cosx + 1 = 0 


Solve the following equation:
 cosx + sin x = cos 2x + sin 2x

 


Write the number of solutions of the equation
4sinx3cosx=7


Write the set of values of a for which the equation

3sinxcosx=a has no solution.

Write the number of points of intersection of the curves

2y=1 and y=cosx,0x2π.
 

If 2sin2x=3cosx. where 0x2π, then find the value of x.


If a is any real number, the number of roots of cotxtanx=a in the first quadrant is (are).


A solution of the equation cos2x+sinx+1=0, lies in the interval


The smallest positive angle which satisfies the equation ​

2sin2x+3cosx+1=0 is

If 4sin2x=1, then the values of x are

 


A value of x satisfying cosx+3sinx=2 is

 

Find the principal solution and general solution of the following:
cot θ = 3


Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°

2 sin2x + 1 = 3 sin x


Solve the following equations:
sinθ+3cosθ = 1


Solve the following equations:
2cos 2x – 7 cos x + 3 = 0


Choose the correct alternative:
cos6x+6cos4x+15cosx+10cos5x+5cs3x+10cosx is equal to


Solve 3 cos θ + sin θ = 2


If 2sin2θ = 3cosθ, where 0 ≤ θ ≤ 2π, then find the value of θ.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.