हिंदी

Solve 3 cos θ + sin θ = 2 - Mathematics

Advertisements
Advertisements

प्रश्न

Solve `sqrt(3)` cos θ + sin θ = `sqrt(2)`

योग

उत्तर

Divide the given equation by 2 to get

`sqrt(3)/2 cos theta + 1/2 sin theta = 1/sqrt(2)`

or `cos  pi/6 cos theta + sin  pi/6 sin theta = cos  pi/4`

or `cos(pi/6 - theta) = cos  pi/4` or `cos(theta - pi/6) = cos  pi/4` 

Thus, the solution is given by, i.e., θ = `2 m pi +- pi/4 + pi/6`

Hence, the solution is

θ = `2 m pi + pi/4 + pi/6` and `2 m pi - pi/4 + pi/6,` i.e., `theta = 2 m pi + (5pi)/12` and `theta = 2 m pi - pi / 12`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Trigonometric Functions - Solved Examples [पृष्ठ ४७]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
अध्याय 3 Trigonometric Functions
Solved Examples | Q 14 | पृष्ठ ४७

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the principal and general solutions of the equation  `cot x = -sqrt3`


If \[T_n = \sin^n x + \cos^n x\], prove that \[6 T_{10} - 15 T_8 + 10 T_6 - 1 = 0\]


Prove that: tan (−225°) cot (−405°) −tan (−765°) cot (675°) = 0


Prove that:
\[\sin^2 \frac{\pi}{18} + \sin^2 \frac{\pi}{9} + \sin^2 \frac{7\pi}{18} + \sin^2 \frac{4\pi}{9} = 2\]

 

Prove that:
\[\sin\frac{13\pi}{3}\sin\frac{8\pi}{3} + \cos\frac{2\pi}{3}\sin\frac{5\pi}{6} = \frac{1}{2}\]


If tan x = \[x - \frac{1}{4x}\], then sec x − tan x is equal to


\[\sqrt{\frac{1 + \cos x}{1 - \cos x}}\] is equal to

 


If \[\frac{\pi}{2} < x < \pi, \text{ then }\sqrt{\frac{1 - \sin x}{1 + \sin x}} + \sqrt{\frac{1 + \sin x}{1 - \sin x}}\] is equal to


Find the general solution of the following equation:

\[\tan x = - \frac{1}{\sqrt{3}}\]

Find the general solution of the following equation:

\[\sin 9x = \sin x\]

Solve the following equation:
\[\sin^2 x - \cos x = \frac{1}{4}\]


Solve the following equation:

\[\sin x + \sin 5x = \sin 3x\]

Solve the following equation:

\[\sin x + \sin 2x + \sin 3x + \sin 4x = 0\]

Solve the following equation:
\[\cot x + \tan x = 2\]

 


Solve the following equation:
4sinx cosx + 2 sin x + 2 cosx + 1 = 0 


Solve the following equation:
 cosx + sin x = cos 2x + sin 2x

 


Solve the following equation:
\[2^{\sin^2 x} + 2^{\cos^2 x} = 2\sqrt{2}\]


Write the values of x in [0, π] for which \[\sin 2x, \frac{1}{2}\]

 and cos 2x are in A.P.


If \[2 \sin^2 x = 3\cos x\]. where \[0 \leq x \leq 2\pi\], then find the value of x.


If \[\cos x + \sqrt{3} \sin x = 2,\text{ then }x =\]

 


In (0, π), the number of solutions of the equation ​ \[\tan x + \tan 2x + \tan 3x = \tan x \tan 2x \tan 3x\] is 


Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°

2 sin2x + 1 = 3 sin x


Solve the following equations:
cos θ + cos 3θ = 2 cos 2θ


Solve the following equations:
sin 2θ – cos 2θ – sin θ + cos θ = θ


Solve the following equations:
2cos 2x – 7 cos x + 3 = 0


Choose the correct alternative:
If tan 40° = λ, then `(tan 140^circ - tan 130^circ)/(1 + tan 140^circ *  tan 130^circ)` =


Choose the correct alternative:
If cos pθ + cos qθ = 0 and if p ≠ q, then θ is equal to (n is any integer)


In a triangle ABC with ∠C = 90° the equation whose roots are tan A and tan B is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×