Advertisements
Advertisements
प्रश्न
Prove that: tan (−225°) cot (−405°) −tan (−765°) cot (675°) = 0
उत्तर
LHS =\[ \tan \left( - 225^\circ \right) \cot \left( - 405^\circ \right) - \tan \left( - 765^\circ \right) \cot \left( 675^\circ \right)\]
\[ = \left[ - \tan \left( 225^\circ \right) \right]\left[ - \cot \left( 405^\circ \right) \right] - \left[ - \tan \left( 765^\circ \right) \right] \cot \left( 675^\circ \right) \left[ \because \tan \left( - x \right) = \tan \left( x \right) and \cot \left( - x \right) = - \cot \left( x \right) \right]\]
\[ = \tan \left( 225^\circ \right) \cot \left( 405^\circ \right) + \tan \left( 765^\circ \right) \cot \left( 675^\circ \right)\]
\[ = \tan \left( 90^\circ \times 2 + 45^\circ \right) \cot \left( 90^\circ \times 4 + 45^\circ \right) + \tan \left( 90^\circ \times 8 + 45^\circ \right) \cot \left( 90^\circ \times 7 + 45^\circ \right)\]
\[ = \tan \left( 45^\circ \right) \cot \left( 45^\circ \right) + \tan \left( 45^\circ \right)\left[ - \tan \left( 45^\circ \right) \right]\]
\[ = 1 \times 1 + 1 \times \left( - 1 \right)\]
\[ = 1 - 1\]
\[ = 0\]
RHS
Hence, proved .
APPEARS IN
संबंधित प्रश्न
Find the principal and general solutions of the equation `tan x = sqrt3`
Find the general solution of the equation sin x + sin 3x + sin 5x = 0
If \[cosec x - \sin x = a^3 , \sec x - \cos x = b^3\], then prove that \[a^2 b^2 \left( a^2 + b^2 \right) = 1\]
If \[T_n = \sin^n x + \cos^n x\], prove that \[6 T_{10} - 15 T_8 + 10 T_6 - 1 = 0\]
Prove that: cos 24° + cos 55° + cos 125° + cos 204° + cos 300° = \[\frac{1}{2}\]
Prove that:
\[\frac{\cos (2\pi + x) cosec (2\pi + x) \tan (\pi/2 + x)}{\sec(\pi/2 + x)\cos x \cot(\pi + x)} = 1\]
Prove that:
\[\sin^2 \frac{\pi}{18} + \sin^2 \frac{\pi}{9} + \sin^2 \frac{7\pi}{18} + \sin^2 \frac{4\pi}{9} = 2\]
Prove that:
\[\sin\frac{13\pi}{3}\sin\frac{8\pi}{3} + \cos\frac{2\pi}{3}\sin\frac{5\pi}{6} = \frac{1}{2}\]
Prove that:
If sec x + tan x = k, cos x =
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
\[\sin x + \cos x = \sqrt{2}\]
Solve the following equation:
\[\cot x + \tan x = 2\]
Solve the following equation:
\[5 \cos^2 x + 7 \sin^2 x - 6 = 0\]
Solve the following equation:
sin x tan x – 1 = tan x – sin x
If secx cos5x + 1 = 0, where \[0 < x \leq \frac{\pi}{2}\], find the value of x.
Write the general solutions of tan2 2x = 1.
If cos x = k has exactly one solution in [0, 2π], then write the values(s) of k.
Write the number of points of intersection of the curves
If a is any real number, the number of roots of \[\cot x - \tan x = a\] in the first quadrant is (are).
The smallest positive angle which satisfies the equation
General solution of \[\tan 5 x = \cot 2 x\] is
The number of values of x in the interval [0, 5 π] satisfying the equation \[3 \sin^2 x - 7 \sin x + 2 = 0\] is
Find the principal solution and general solution of the following:
tan θ = `- 1/sqrt(3)`
Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°
sin4x = sin2x
Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°
2 cos2x + 1 = – 3 cos x
Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°
2 sin2x + 1 = 3 sin x
Solve the following equations:
cos θ + cos 3θ = 2 cos 2θ
Solve the following equations:
2cos 2x – 7 cos x + 3 = 0
Choose the correct alternative:
If f(θ) = |sin θ| + |cos θ| , θ ∈ R, then f(θ) is in the interval
If sin θ and cos θ are the roots of the equation ax2 – bx + c = 0, then a, b and c satisfy the relation ______.
Find the general solution of the equation 5cos2θ + 7sin2θ – 6 = 0