हिंदी

If Secx Cos5x + 1 = 0, Where 0 < X ≤ π 2 , Find the Value of X. - Mathematics

Advertisements
Advertisements

प्रश्न

If secx cos5x + 1 = 0, where \[0 < x \leq \frac{\pi}{2}\], find the value of x.

योग

उत्तर

The given equation is secx cos5x + 1 = 0.
Now,
\[\sec x\cos5x + 1 = 0\]
\[ \Rightarrow \frac{\cos5x}{\cos x} + 1 = 0\]
\[ \Rightarrow \cos5x + \cos x = 0\]
\[ \Rightarrow 2\cos3x \cos2x = 0\]
\[\Rightarrow \cos3x = 0\text{ or }\cos2x = 0\]
\[ \Rightarrow 3x = \left( 2n + 1 \right)\frac{\pi}{2}, n \in Z\text{ or }2x = \left( 2m + 1 \right)\frac{\pi}{2}, m \in Z\]
\[ \Rightarrow x = \left( 2n + 1 \right)\frac{\pi}{6}\text{ or }x = \left( 2m + 1 \right)\frac{\pi}{4}\]
Putting n = 0 and n = 1, we get
\[x = \frac{\pi}{6}, \frac{\pi}{2} \left( 0 < x \leq \frac{\pi}{2} \right)\]
Also, putting m = 0, we get \[x = \frac{\pi}{4} \left( 0 < x \leq \frac{\pi}{2} \right)\]
Hence, the values of x are \[\frac{\pi}{6}, \frac{\pi}{4}\] and \[\frac{\pi}{2}\].

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 11: Trigonometric equations - Exercise 11.1 [पृष्ठ २२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 11 Trigonometric equations
Exercise 11.1 | Q 13 | पृष्ठ २२

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the principal and general solutions of the equation  `cot x = -sqrt3`


Find the general solution of the equation  sin x + sin 3x + sin 5x = 0


If \[x = \frac{2 \sin x}{1 + \cos x + \sin x}\], then prove that

\[\frac{1 - \cos x + \sin x}{1 + \sin x}\] is also equal to a.

If \[cosec x - \sin x = a^3 , \sec x - \cos x = b^3\], then prove that \[a^2 b^2 \left( a^2 + b^2 \right) = 1\]


If \[\sin x + \cos x = m\], then prove that \[\sin^6 x + \cos^6 x = \frac{4 - 3 \left( m^2 - 1 \right)^2}{4}\], where \[m^2 \leq 2\]


Prove that: tan (−225°) cot (−405°) −tan (−765°) cot (675°) = 0


Prove that:

\[3\sin\frac{\pi}{6}\sec\frac{\pi}{3} - 4\sin\frac{5\pi}{6}\cot\frac{\pi}{4} = 1\]

 


Prove that

\[\frac{\sin(180^\circ + x) \cos(90^\circ + x) \tan(270^\circ - x) \cot(360^\circ - x)}{\sin(360^\circ - x) \cos(360^\circ + x) cosec( - x) \sin(270^\circ + x)} = 1\]

 


In a ∆ABC, prove that:

\[\cos\left( \frac{A + B}{2} \right) = \sin\frac{C}{2}\]

 


In a ∆A, B, C, D be the angles of a cyclic quadrilateral, taken in order, prove that cos(180° − A) + cos (180° + B) + cos (180° + C) − sin (90° + D) = 0


Find x from the following equations:
\[cosec\left( \frac{\pi}{2} + \theta \right) + x \cos \theta \cot\left( \frac{\pi}{2} + \theta \right) = \sin\left( \frac{\pi}{2} + \theta \right)\]


Prove that:
\[\sin \frac{13\pi}{3}\sin\frac{2\pi}{3} + \cos\frac{4\pi}{3}\sin\frac{13\pi}{6} = \frac{1}{2}\]


Prove that:

\[\sin\frac{10\pi}{3}\cos\frac{13\pi}{6} + \cos\frac{8\pi}{3}\sin\frac{5\pi}{6} = - 1\]

If tan x = \[x - \frac{1}{4x}\], then sec x − tan x is equal to


If \[\frac{\pi}{2} < x < \pi, \text{ then }\sqrt{\frac{1 - \sin x}{1 + \sin x}} + \sqrt{\frac{1 + \sin x}{1 - \sin x}}\] is equal to


\[\sec^2 x = \frac{4xy}{(x + y )^2}\] is true if and only if

 


Find the general solution of the following equation:

\[\sec x = \sqrt{2}\]

Find the general solution of the following equation:

\[\cos 3x = \frac{1}{2}\]

Find the general solution of the following equation:

\[\tan px = \cot qx\]

 


Solve the following equation:

\[\sin x + \sin 2x + \sin 3x + \sin 4x = 0\]

Solve the following equation:

\[\sin 2x - \sin 4x + \sin 6x = 0\]

Solve the following equation:

\[\tan x + \tan 2x + \tan 3x = 0\]

Solve the following equation:
\[5 \cos^2 x + 7 \sin^2 x - 6 = 0\]


Write the solution set of the equation 

\[\left( 2 \cos x + 1 \right) \left( 4 \cos x + 5 \right) = 0\] in the interval [0, 2π].

The general solution of the equation \[7 \cos^2 x + 3 \sin^2 x = 4\] is


If \[\cot x - \tan x = \sec x\], then, x is equal to

 


The number of values of ​x in [0, 2π] that satisfy the equation \[\sin^2 x - \cos x = \frac{1}{4}\]


If \[\sqrt{3} \cos x + \sin x = \sqrt{2}\] , then general value of x is


The solution of the equation \[\cos^2 x + \sin x + 1 = 0\] lies in the interval


If \[\cos x = - \frac{1}{2}\] and 0 < x < 2\pi, then the solutions are


Find the principal solution and general solution of the following:
cot θ = `sqrt(3)`


Solve the following equations:
sin θ + sin 3θ + sin 5θ = 0


Solve the following equations:
sin θ + cos θ = `sqrt(2)`


Choose the correct alternative:
`(cos 6x + 6 cos 4x + 15cos x + 10)/(cos 5x + 5cs 3x + 10 cos x)` is equal to


Choose the correct alternative:
If sin α + cos α = b, then sin 2α is equal to


Solve the equation sin θ + sin 3θ + sin 5θ = 0


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×