Advertisements
Advertisements
प्रश्न
If secx cos5x + 1 = 0, where \[0 < x \leq \frac{\pi}{2}\], find the value of x.
उत्तर
The given equation is secx cos5x + 1 = 0.
Now,
\[\sec x\cos5x + 1 = 0\]
\[ \Rightarrow \frac{\cos5x}{\cos x} + 1 = 0\]
\[ \Rightarrow \cos5x + \cos x = 0\]
\[ \Rightarrow 2\cos3x \cos2x = 0\]
\[\Rightarrow \cos3x = 0\text{ or }\cos2x = 0\]
\[ \Rightarrow 3x = \left( 2n + 1 \right)\frac{\pi}{2}, n \in Z\text{ or }2x = \left( 2m + 1 \right)\frac{\pi}{2}, m \in Z\]
\[ \Rightarrow x = \left( 2n + 1 \right)\frac{\pi}{6}\text{ or }x = \left( 2m + 1 \right)\frac{\pi}{4}\]
Putting n = 0 and n = 1, we get
\[x = \frac{\pi}{6}, \frac{\pi}{2} \left( 0 < x \leq \frac{\pi}{2} \right)\]
Also, putting m = 0, we get \[x = \frac{\pi}{4} \left( 0 < x \leq \frac{\pi}{2} \right)\]
Hence, the values of x are \[\frac{\pi}{6}, \frac{\pi}{4}\] and \[\frac{\pi}{2}\].
APPEARS IN
संबंधित प्रश्न
Find the principal and general solutions of the equation `cot x = -sqrt3`
Find the general solution of the equation sin x + sin 3x + sin 5x = 0
If \[x = \frac{2 \sin x}{1 + \cos x + \sin x}\], then prove that
If \[cosec x - \sin x = a^3 , \sec x - \cos x = b^3\], then prove that \[a^2 b^2 \left( a^2 + b^2 \right) = 1\]
If \[\sin x + \cos x = m\], then prove that \[\sin^6 x + \cos^6 x = \frac{4 - 3 \left( m^2 - 1 \right)^2}{4}\], where \[m^2 \leq 2\]
Prove that: tan (−225°) cot (−405°) −tan (−765°) cot (675°) = 0
Prove that:
Prove that
In a ∆ABC, prove that:
In a ∆A, B, C, D be the angles of a cyclic quadrilateral, taken in order, prove that cos(180° − A) + cos (180° + B) + cos (180° + C) − sin (90° + D) = 0
Find x from the following equations:
\[cosec\left( \frac{\pi}{2} + \theta \right) + x \cos \theta \cot\left( \frac{\pi}{2} + \theta \right) = \sin\left( \frac{\pi}{2} + \theta \right)\]
Prove that:
\[\sin \frac{13\pi}{3}\sin\frac{2\pi}{3} + \cos\frac{4\pi}{3}\sin\frac{13\pi}{6} = \frac{1}{2}\]
Prove that:
If tan x = \[x - \frac{1}{4x}\], then sec x − tan x is equal to
If \[\frac{\pi}{2} < x < \pi, \text{ then }\sqrt{\frac{1 - \sin x}{1 + \sin x}} + \sqrt{\frac{1 + \sin x}{1 - \sin x}}\] is equal to
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
\[5 \cos^2 x + 7 \sin^2 x - 6 = 0\]
Write the solution set of the equation
The general solution of the equation \[7 \cos^2 x + 3 \sin^2 x = 4\] is
If \[\cot x - \tan x = \sec x\], then, x is equal to
The number of values of x in [0, 2π] that satisfy the equation \[\sin^2 x - \cos x = \frac{1}{4}\]
If \[\sqrt{3} \cos x + \sin x = \sqrt{2}\] , then general value of x is
The solution of the equation \[\cos^2 x + \sin x + 1 = 0\] lies in the interval
If \[\cos x = - \frac{1}{2}\] and 0 < x < 2\pi, then the solutions are
Find the principal solution and general solution of the following:
cot θ = `sqrt(3)`
Solve the following equations:
sin θ + sin 3θ + sin 5θ = 0
Solve the following equations:
sin θ + cos θ = `sqrt(2)`
Choose the correct alternative:
`(cos 6x + 6 cos 4x + 15cos x + 10)/(cos 5x + 5cs 3x + 10 cos x)` is equal to
Choose the correct alternative:
If sin α + cos α = b, then sin 2α is equal to
Solve the equation sin θ + sin 3θ + sin 5θ = 0