Advertisements
Advertisements
प्रश्न
Find x from the following equations:
\[cosec\left( \frac{\pi}{2} + \theta \right) + x \cos \theta \cot\left( \frac{\pi}{2} + \theta \right) = \sin\left( \frac{\pi}{2} + \theta \right)\]
उत्तर
\[90^\circ = \frac{\pi}{2}\]
We have:
\[ cosec\left( 90^\circ + \theta \right) + x \cos \theta \cot\left( 90^\circ + \theta \right) = \sin\left( 90^\circ + \theta \right)\]
\[ \Rightarrow \sec \theta + x \cos \theta \left[ - \tan \theta \right] = \cos \theta\]
\[ \Rightarrow \sec \theta - x cos\theta tan\theta = \cos \theta\]
\[ \Rightarrow \sec \theta - x cos\theta \times \frac{\sin \theta}{\cos \theta} = \cos \theta\]
\[ \Rightarrow \sec \theta - x \sin\theta = \cos \theta\]
\[ \Rightarrow \sec \theta - \cos \theta = x \sin\theta$\]
\[ \Rightarrow \frac{1}{\cos \theta} - cos\theta = x \sin\theta\]
\[ \Rightarrow \frac{1 - \cos^2 \theta}{\cos \theta} = x \sin\theta$\]
\[ \Rightarrow \frac{\sin^2 \theta}{cos\theta} = x \sin\theta\]
\[ \Rightarrow \frac{\sin^2 \theta}{\cos \theta \sin \theta} = x\]
\[ \Rightarrow \frac{\sin \theta}{\cos \theta} = x\]
\[ \Rightarrow \tan\theta = x\]
\[ \therefore x = \tan\theta\]
APPEARS IN
संबंधित प्रश्न
Find the general solution of the equation sin 2x + cos x = 0
Find the general solution of the equation sin x + sin 3x + sin 5x = 0
If \[\tan x = \frac{a}{b},\] show that
If \[T_n = \sin^n x + \cos^n x\], prove that \[\frac{T_3 - T_5}{T_1} = \frac{T_5 - T_7}{T_3}\]
If \[T_n = \sin^n x + \cos^n x\], prove that \[2 T_6 - 3 T_4 + 1 = 0\]
If \[T_n = \sin^n x + \cos^n x\], prove that \[6 T_{10} - 15 T_8 + 10 T_6 - 1 = 0\]
Prove that: tan 225° cot 405° + tan 765° cot 675° = 0
Prove that: tan (−225°) cot (−405°) −tan (−765°) cot (675°) = 0
Prove that
In a ∆ABC, prove that:
Prove that:
\[\sin\frac{13\pi}{3}\sin\frac{8\pi}{3} + \cos\frac{2\pi}{3}\sin\frac{5\pi}{6} = \frac{1}{2}\]
If x is an acute angle and \[\tan x = \frac{1}{\sqrt{7}}\], then the value of \[\frac{{cosec}^2 x - \sec^2 x}{{cosec}^2 x + \sec^2 x}\] is
The value of sin25° + sin210° + sin215° + ... + sin285° + sin290° is
If tan A + cot A = 4, then tan4 A + cot4 A is equal to
If A lies in second quadrant 3tan A + 4 = 0, then the value of 2cot A − 5cosA + sin A is equal to
If \[cosec x + \cot x = \frac{11}{2}\], then tan x =
If tan θ + sec θ =ex, then cos θ equals
If sec x + tan x = k, cos x =
If \[f\left( x \right) = \cos^2 x + \sec^2 x\], then
Which of the following is correct?
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
\[\sqrt{3} \cos x + \sin x = 1\]
Solve the following equation:
\[\sec x\cos5x + 1 = 0, 0 < x < \frac{\pi}{2}\]
Solve the following equation:
4sinx cosx + 2 sin x + 2 cosx + 1 = 0
Solve the following equation:
\[2^{\sin^2 x} + 2^{\cos^2 x} = 2\sqrt{2}\]
A solution of the equation \[\cos^2 x + \sin x + 1 = 0\], lies in the interval
If \[\cot x - \tan x = \sec x\], then, x is equal to
A value of x satisfying \[\cos x + \sqrt{3} \sin x = 2\] is
If \[e^{\sin x} - e^{- \sin x} - 4 = 0\], then x =
General solution of \[\tan 5 x = \cot 2 x\] is
Find the principal solution and general solution of the following:
cot θ = `sqrt(3)`
Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°
2 sin2x + 1 = 3 sin x
Solve the following equations:
2 cos2θ + 3 sin θ – 3 = θ
Solve the following equations:
sin 2θ – cos 2θ – sin θ + cos θ = θ
Choose the correct alternative:
If sin α + cos α = b, then sin 2α is equal to
If sin θ and cos θ are the roots of the equation ax2 – bx + c = 0, then a, b and c satisfy the relation ______.
If 2sin2θ = 3cosθ, where 0 ≤ θ ≤ 2π, then find the value of θ.