Advertisements
Advertisements
प्रश्न
Solve the following equations:
2 cos2θ + 3 sin θ – 3 = θ
उत्तर
2 cos2θ + 3 sin θ – 3 = θ
2(1 – sin2θ)+ 3 sin θ – 3 = θ
2 – 2 sin2θ + 3 sin θ – 3 = θ
– 2 sin2θ + 3 sin θ – 1 = θ
2 sin2 θ – 3 sin θ + 1 = θ
2 sin2θ – 2 sin θ – sin θ + 1 = θ
2 sin θ (sin θ – 1) – (sin θ – 1) = θ
(2 sin θ – 1)(sin θ – 1) = 0
2 sin θ – 1 = 0 or sin θ – 1 = θ
sin θ = `1/2` or sin θ = 1
To find the general solution of’ sin θ = `1/2`
sin θ = `1/2`
sin θ = `sin pi/6`
The general solution is θ = `"n"pi + (- 1)^"n" pi/6`, n ∈ Z
To find the general solution of sin θ = 1
sin θ = 1
sin θ = `pii/2`
The general solution is θ = `"n"pi + (- 1)^"n" pi/6`, n ∈ Z
∴ The required solutions are
θ = `"n"pi + (- 1)^"n" pi/6`, n ∈ Z
or
θ = `"n"pi + (- 1)^"n" pi/6`, n ∈ Z
APPEARS IN
संबंधित प्रश्न
Find the general solution for each of the following equations sec2 2x = 1– tan 2x
If \[\cot x \left( 1 + \sin x \right) = 4 m \text{ and }\cot x \left( 1 - \sin x \right) = 4 n,\] \[\left( m^2 + n^2 \right)^2 = mn\]
If \[a = \sec x - \tan x \text{ and }b = cosec x + \cot x\], then shown that \[ab + a - b + 1 = 0\]
Prove that: tan 225° cot 405° + tan 765° cot 675° = 0
Prove that:
If x = r sin θ cos ϕ, y = r sin θ sin ϕ and z = r cos θ, then x2 + y2 + z2 is independent of
If tan θ + sec θ =ex, then cos θ equals
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Solve the following equation:
\[\sin^2 x - \cos x = \frac{1}{4}\]
Solve the following equation:
Solve the following equation:
Solve the following equation:
If secx cos5x + 1 = 0, where \[0 < x \leq \frac{\pi}{2}\], find the value of x.
A solution of the equation \[\cos^2 x + \sin x + 1 = 0\], lies in the interval
Find the principal solution and general solution of the following:
tan θ = `- 1/sqrt(3)`
Choose the correct alternative:
If cos pθ + cos qθ = 0 and if p ≠ q, then θ is equal to (n is any integer)
Choose the correct alternative:
If f(θ) = |sin θ| + |cos θ| , θ ∈ R, then f(θ) is in the interval