हिंदी
तमिलनाडु बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान कक्षा ११

Solve the following equations:2 cos2θ + 3 sin θ – 3 = θ - Mathematics

Advertisements
Advertisements

प्रश्न

Solve the following equations:
2 cos2θ + 3 sin θ – 3 = θ

योग

उत्तर

2 cos2θ + 3 sin θ – 3 = θ

2(1 – sin2θ)+ 3 sin θ – 3 = θ

2 – 2 sin2θ + 3 sin θ – 3 = θ

– 2 sin2θ + 3 sin θ – 1 = θ

2 sin2 θ – 3 sin θ + 1 = θ

2 sin2θ – 2 sin θ – sin θ + 1 = θ

2 sin θ (sin θ – 1) – (sin θ – 1) = θ

(2 sin θ – 1)(sin θ – 1) = 0

2 sin θ – 1 = 0 or sin θ – 1 = θ

sin θ = `1/2` or sin θ = 1

To find the general solution of’ sin θ = `1/2`

sin θ = `1/2`

sin θ = `sin  pi/6`

The general solution is θ = `"n"pi + (- 1)^"n"  pi/6`, n ∈ Z

To find the general solution of sin θ = 1

sin θ = 1

sin θ = `pii/2`

The general solution is θ = `"n"pi + (- 1)^"n"  pi/6`, n ∈ Z

∴ The required solutions are

θ = `"n"pi + (- 1)^"n"  pi/6`, n ∈ Z

or

θ = `"n"pi + (- 1)^"n"  pi/6`, n ∈ Z

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Trigonometry - Exercise 3.8 [पृष्ठ १३३]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 11 TN Board
अध्याय 3 Trigonometry
Exercise 3.8 | Q 3. (ii) | पृष्ठ १३३

संबंधित प्रश्न

Find the general solution for each of the following equations sec2 2x = 1– tan 2x


If \[\cot x \left( 1 + \sin x \right) = 4 m \text{ and }\cot x \left( 1 - \sin x \right) = 4 n,\] \[\left( m^2 + n^2 \right)^2 = mn\]


If \[a = \sec x - \tan x \text{ and }b = cosec x + \cot x\], then shown that  \[ab + a - b + 1 = 0\]


Prove that:  tan 225° cot 405° + tan 765° cot 675° = 0


Prove that:

\[\tan\frac{5\pi}{4}\cot\frac{9\pi}{4} + \tan\frac{17\pi}{4}\cot\frac{15\pi}{4} = 0\]

 


If x = r sin θ cos ϕ, y = r sin θ sin ϕ and r cos θ, then x2 + y2 + z2 is independent of


If tan θ + sec θ =ex, then cos θ equals


Find the general solution of the following equation:

\[\cos x = - \frac{\sqrt{3}}{2}\]

Find the general solution of the following equation:

\[\sin 2x + \cos x = 0\]

Find the general solution of the following equation:

\[\sin 3x + \cos 2x = 0\]

Solve the following equation:
\[\sin^2 x - \cos x = \frac{1}{4}\]


Solve the following equation:

\[2 \sin^2 x + \sqrt{3} \cos x + 1 = 0\]

Solve the following equation:

\[\tan^2 x + \left( 1 - \sqrt{3} \right) \tan x - \sqrt{3} = 0\]

Solve the following equation:

\[\sin x + \cos x = 1\]

If secx cos5x + 1 = 0, where \[0 < x \leq \frac{\pi}{2}\], find the value of x.


A solution of the equation \[\cos^2 x + \sin x + 1 = 0\], lies in the interval


Find the principal solution and general solution of the following:
tan θ = `- 1/sqrt(3)`


Choose the correct alternative:
If cos pθ + cos qθ = 0 and if p ≠ q, then θ is equal to (n is any integer)


Choose the correct alternative:
If f(θ) = |sin θ| + |cos θ| , θ ∈ R, then f(θ) is in the interval


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×