Advertisements
Advertisements
प्रश्न
Find the general solution of the following equation:
उत्तर
We have:
\[\Rightarrow \cos x = - \sin 2x\]
\[ \Rightarrow \cos x = \cos \left( \frac{\pi}{2} + 2x \right)\]
\[ \Rightarrow x = 2n\pi \pm \left( \frac{\pi}{2} + 2x \right), n \in Z\]
On taking positive sign, we have:
\[x = 2n\pi + \frac{\pi}{2} + 2x\]
\[ \Rightarrow - x = 2n\pi + \frac{\pi}{2}\]
\[ \Rightarrow x = 2m\pi - \frac{\pi}{2}, m = - n \in Z\]
\[ \Rightarrow x = \frac{(4m - 1)\pi}{2}, m \in Z\]
On taking negative sign, we have:
`x-2nx-x/2-2x`
`=>3x=2nx-pi/2`
`=>x=((4n-1)x)/6,n in "Z"`
APPEARS IN
संबंधित प्रश्न
Find the principal and general solutions of the equation `tan x = sqrt3`
Find the principal and general solutions of the equation `cot x = -sqrt3`
Find the general solution of the equation cos 4 x = cos 2 x
Find the general solution of the equation cos 3x + cos x – cos 2x = 0
Find the general solution of the equation sin 2x + cos x = 0
If \[\cot x \left( 1 + \sin x \right) = 4 m \text{ and }\cot x \left( 1 - \sin x \right) = 4 n,\] \[\left( m^2 + n^2 \right)^2 = mn\]
If \[\sin x + \cos x = m\], then prove that \[\sin^6 x + \cos^6 x = \frac{4 - 3 \left( m^2 - 1 \right)^2}{4}\], where \[m^2 \leq 2\]
If \[T_n = \sin^n x + \cos^n x\], prove that \[6 T_{10} - 15 T_8 + 10 T_6 - 1 = 0\]
Prove that:
Prove that
Find x from the following equations:
\[x \cot\left( \frac{\pi}{2} + \theta \right) + \tan\left( \frac{\pi}{2} + \theta \right)\sin \theta + cosec\left( \frac{\pi}{2} + \theta \right) = 0\]
Prove that:
\[\sin \frac{13\pi}{3}\sin\frac{2\pi}{3} + \cos\frac{4\pi}{3}\sin\frac{13\pi}{6} = \frac{1}{2}\]
If tan x = \[x - \frac{1}{4x}\], then sec x − tan x is equal to
If sec \[x = x + \frac{1}{4x}\], then sec x + tan x =
The value of sin25° + sin210° + sin215° + ... + sin285° + sin290° is
If x sin 45° cos2 60° = \[\frac{\tan^2 60^\circ cosec30^\circ}{\sec45^\circ \cot^{2^\circ} 30^\circ}\], then x =
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
\[2^{\sin^2 x} + 2^{\cos^2 x} = 2\sqrt{2}\]
Write the number of solutions of the equation tan x + sec x = 2 cos x in the interval [0, 2π].
If \[4 \sin^2 x = 1\], then the values of x are
If \[\cot x - \tan x = \sec x\], then, x is equal to
If \[\sqrt{3} \cos x + \sin x = \sqrt{2}\] , then general value of x is
Solve the following equations:
2 cos2θ + 3 sin θ – 3 = θ
Solve the following equations:
cos θ + cos 3θ = 2 cos 2θ
Solve the following equations:
sin θ + sin 3θ + sin 5θ = 0
Solve 2 tan2x + sec2x = 2 for 0 ≤ x ≤ 2π.
Find the general solution of the equation 5cos2θ + 7sin2θ – 6 = 0
Number of solutions of the equation tan x + sec x = 2 cosx lying in the interval [0, 2π] is ______.