हिंदी

Number of solutions of the equation tanx + secx = 2 cosx lying in the interval [0, 2π] is ______. - Mathematics

Advertisements
Advertisements

प्रश्न

Number of solutions of the equation tan x + sec x = 2 cosx lying in the interval [0, 2π] is ______.

विकल्प

  • 0

  • 1

  • 2

  • 3

MCQ
रिक्त स्थान भरें

उत्तर

Number of solutions of the equation tan x + sec x = 2 cosx lying in the interval [0, 2π] is 3.

Explanation:

tanx + sec = 2cosx

sin + 1 = cos2x = sinx + 1= 2 -  sin2x

2sin2x + sinx -1 = 0

(2sinx - 1) (sin + 1) = 0

but sinx = -1 

`x= (3pi)/2`

`sinx = 1/2 = sin(pi/6)`

therefore the general solution is,

`x = npi + (-1)^n.pi/6`

`x = ...pi/6, (5pi)/6`

therefore, the number of solutions in the given interval is 3. 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Trigonometric Functions - Exercise [पृष्ठ ५८]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
अध्याय 3 Trigonometric Functions
Exercise | Q 53 | पृष्ठ ५८

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the principal and general solutions of the equation `tan x = sqrt3`


Find the general solution of the equation sin 2x + cos x = 0


If \[x = \frac{2 \sin x}{1 + \cos x + \sin x}\], then prove that

\[\frac{1 - \cos x + \sin x}{1 + \sin x}\] is also equal to a.

If \[T_n = \sin^n x + \cos^n x\], prove that \[6 T_{10} - 15 T_8 + 10 T_6 - 1 = 0\]


Prove that: tan (−225°) cot (−405°) −tan (−765°) cot (675°) = 0


Prove that

\[\left\{ 1 + \cot x - \sec\left( \frac{\pi}{2} + x \right) \right\}\left\{ 1 + \cot x + \sec\left( \frac{\pi}{2} + x \right) \right\} = 2\cot x\]

 


Prove that

\[\frac{\tan (90^\circ - x) \sec(180^\circ - x) \sin( - x)}{\sin(180^\circ + x) \cot(360^\circ - x) cosec(90^\circ - x)} = 1\]

 


Prove that:

\[\tan\frac{5\pi}{4}\cot\frac{9\pi}{4} + \tan\frac{17\pi}{4}\cot\frac{15\pi}{4} = 0\]

 


If \[0 < x < \frac{\pi}{2}\], and if \[\frac{y + 1}{1 - y} = \sqrt{\frac{1 + \sin x}{1 - \sin x}}\], then y is equal to


If x = r sin θ cos ϕ, y = r sin θ sin ϕ and r cos θ, then x2 + y2 + z2 is independent of


If A lies in second quadrant 3tan A + 4 = 0, then the value of 2cot A − 5cosA + sin A is equal to


If tan θ + sec θ =ex, then cos θ equals


The value of \[\tan1^\circ \tan2^\circ \tan3^\circ . . . \tan89^\circ\] is

 

Solve the following equation:

\[\sin x + \sin 2x + \sin 3 = 0\]

Solve the following equation:
3 – 2 cos x – 4 sin x – cos 2x + sin 2x = 0


Solve the following equation:
3sin2x – 5 sin x cos x + 8 cos2 x = 2


If secx cos5x + 1 = 0, where \[0 < x \leq \frac{\pi}{2}\], find the value of x.


If \[e^{\sin x} - e^{- \sin x} - 4 = 0\], then x =


Find the principal solution and general solution of the following:
sin θ = `-1/sqrt(2)`


Find the principal solution and general solution of the following:
tan θ = `- 1/sqrt(3)`


Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°

2 cos2x + 1 = – 3 cos x


Solve the following equations:
cos θ + cos 3θ = 2 cos 2θ


Solve the following equations:
sin 2θ – cos 2θ – sin θ + cos θ = θ


Solve the following equations:
`sin theta + sqrt(3) cos theta` = 1


Solve the following equations:
`tan theta + tan (theta + pi/3) + tan (theta + (2pi)/3) = sqrt(3)`


Solve the following equations:
2cos 2x – 7 cos x + 3 = 0


Solve `sqrt(3)` cos θ + sin θ = `sqrt(2)`


If sin θ and cos θ are the roots of the equation ax2 – bx + c = 0, then a, b and c satisfy the relation ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×