हिंदी

Solve the Following Equation: 3sin2x – 5 Sin X Cos X + 8 Cos2 X = 2 - Mathematics

Advertisements
Advertisements

प्रश्न

Solve the following equation:
3sin2x – 5 sin x cos x + 8 cos2 x = 2

योग

उत्तर

\[3 \sin^2 x - 5 \sin x \cos x + 8 \cos^2 x = 2\]
\[ \Rightarrow 3 \sin^2 x - 5 \sin x \cos x + 3 \cos^2 x + 5 \cos^2 x - 2 = 0\]
\[ \Rightarrow 3\left( \sin^2 x + \cos^2 x \right) - 5 \sin x \cos x + 5 \cos^2 x - 2 = 0\]
\[ \Rightarrow 3 - 5 \sin x \cos x + 5 \cos^2 x - 2 = 0\]
\[ \Rightarrow 5 \cos^2 x - 5 \sin x \cos x + 1 = 0\]
\[ \Rightarrow 5\left( 1 - \sin^2 x \right) - 5 \sin x \cos x + 1 = 0\]
\[ \Rightarrow 5 - 5 \sin^2 x - 5 \sin x \cos x + 1 = 0\]
\[ \Rightarrow 5 \sin^2 x + 5 \sin x \cos x - 6 = 0\]
\[\text{ Dividing by }\cos^2 x,\text{ we get }\]
\[ \Rightarrow 5 \tan^2 x + 5 \tan x - 6 \sec^2 x = 0\]
\[ \Rightarrow 5 \tan^2 x + 5 \tan x - 6 - 6 \tan^2 x = 0\]
\[ \Rightarrow - \tan^2 x + 5 \tan x - 6 = 0\]
\[ \Rightarrow \tan^2 x - 5 \tan x + 6 = 0\]
\[ \Rightarrow \tan^2 x - 3 \tan x - 2 \tan x + 6 = 0\]
\[ \Rightarrow \left( \tan x - 3 \right)\left( \tan x - 2 \right) = 0\]
\[ \Rightarrow \left( \tan x - 3 \right) = 0\text{ or }\left( \tan x - 2 \right) = 0\]
\[ \Rightarrow \tan x = 3\text{ or }\tan x = 2\]
\[ \Rightarrow x = n\pi + \tan^{- 1} 3\text{ or }x = n\pi + \tan^{- 1} 2, n \in \mathbb{Z}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 11: Trigonometric equations - Exercise 11.1 [पृष्ठ २२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 11 Trigonometric equations
Exercise 11.1 | Q 9 | पृष्ठ २२

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the general solution for each of the following equations sec2 2x = 1– tan 2x


If \[x = \frac{2 \sin x}{1 + \cos x + \sin x}\], then prove that

\[\frac{1 - \cos x + \sin x}{1 + \sin x}\] is also equal to a.

If \[\tan x = \frac{b}{a}\] , then find the values of \[\sqrt{\frac{a + b}{a - b}} + \sqrt{\frac{a - b}{a + b}}\].


If \[\cot x \left( 1 + \sin x \right) = 4 m \text{ and }\cot x \left( 1 - \sin x \right) = 4 n,\] \[\left( m^2 + n^2 \right)^2 = mn\]


If \[\sin x + \cos x = m\], then prove that \[\sin^6 x + \cos^6 x = \frac{4 - 3 \left( m^2 - 1 \right)^2}{4}\], where \[m^2 \leq 2\]


If \[a = \sec x - \tan x \text{ and }b = cosec x + \cot x\], then shown that  \[ab + a - b + 1 = 0\]


Prove that:

\[\sin\frac{8\pi}{3}\cos\frac{23\pi}{6} + \cos\frac{13\pi}{3}\sin\frac{35\pi}{6} = \frac{1}{2}\]

 


Prove that:
\[\sin^2 \frac{\pi}{18} + \sin^2 \frac{\pi}{9} + \sin^2 \frac{7\pi}{18} + \sin^2 \frac{4\pi}{9} = 2\]

 

Prove that:
\[\sec\left( \frac{3\pi}{2} - x \right)\sec\left( x - \frac{5\pi}{2} \right) + \tan\left( \frac{5\pi}{2} + x \right)\tan\left( x - \frac{3\pi}{2} \right) = - 1 .\]


Find x from the following equations:
\[x \cot\left( \frac{\pi}{2} + \theta \right) + \tan\left( \frac{\pi}{2} + \theta \right)\sin \theta + cosec\left( \frac{\pi}{2} + \theta \right) = 0\]


Prove that:
\[\sin \frac{13\pi}{3}\sin\frac{2\pi}{3} + \cos\frac{4\pi}{3}\sin\frac{13\pi}{6} = \frac{1}{2}\]


If \[0 < x < \frac{\pi}{2}\], and if \[\frac{y + 1}{1 - y} = \sqrt{\frac{1 + \sin x}{1 - \sin x}}\], then y is equal to


sin6 A + cos6 A + 3 sin2 A cos2 A =


If \[cosec x + \cot x = \frac{11}{2}\], then tan x =

 


If \[f\left( x \right) = \cos^2 x + \sec^2 x\], then


Find the general solution of the following equation:

\[\sqrt{3} \sec x = 2\]

Find the general solution of the following equation:

\[\tan 2x \tan x = 1\]

Find the general solution of the following equation:

\[\sin 3x + \cos 2x = 0\]

Solve the following equation:

\[2 \cos^2 x - 5 \cos x + 2 = 0\]

Solve the following equation:

\[3 \cos^2 x - 2\sqrt{3} \sin x \cos x - 3 \sin^2 x = 0\]

Solve the following equation:

\[\cos x + \sin x = \cos 2x + \sin 2x\]

Solve the following equation:

\[\sin x + \sin 2x + \sin 3 = 0\]

Solve the following equation:

\[\tan x + \tan 2x + \tan 3x = 0\]

Solve the following equation:
\[\sin x - 3\sin2x + \sin3x = \cos x - 3\cos2x + \cos3x\]


Solve the following equation:
3 – 2 cos x – 4 sin x – cos 2x + sin 2x = 0


Write the number of solutions of the equation tan x + sec x = 2 cos x in the interval [0, 2π].


Write the set of values of a for which the equation

\[\sqrt{3} \sin x - \cos x = a\] has no solution.

If \[2 \sin^2 x = 3\cos x\]. where \[0 \leq x \leq 2\pi\], then find the value of x.


The smallest value of x satisfying the equation

\[\sqrt{3} \left( \cot x + \tan x \right) = 4\] is 

The general solution of the equation \[7 \cos^2 x + 3 \sin^2 x = 4\] is


If \[\cot x - \tan x = \sec x\], then, x is equal to

 


The solution of the equation \[\cos^2 x + \sin x + 1 = 0\] lies in the interval


The number of values of x in the interval [0, 5 π] satisfying the equation \[3 \sin^2 x - 7 \sin x + 2 = 0\] is


Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°

sin4x = sin2x


Solve the following equations:
sin θ + sin 3θ + sin 5θ = 0


Solve the following equations:
`tan theta + tan (theta + pi/3) + tan (theta + (2pi)/3) = sqrt(3)`


Solve the equation sin θ + sin 3θ + sin 5θ = 0


Solve 2 tan2x + sec2x = 2 for 0 ≤ x ≤ 2π.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×