हिंदी

Sin6 a + Cos6 a + 3 Sin2 a Cos2 a = - Mathematics

Advertisements
Advertisements

प्रश्न

sin6 A + cos6 A + 3 sin2 A cos2 A =

विकल्प

  • 0

  • 1

  • 2

  • 3

MCQ

उत्तर

1
We have: 
\[ \sin^6 A + \cos^6 A + 3\left( \sin^2 A \right) \left( \cos^2 A \right)\]
\[ = \left( \sin^2 A \right)^3 + \left( \cos^2 A \right)^3 + 3\left( \sin^2 A \right) \left( \cos^2 A \right) \times 1\]
\[ = \left( \sin^2 A \right)^3 + \left( \cos^2 A \right)^3 + 3\left( \sin^2 A \right) \left( \cos^2 A \right)\left( \sin^2 A + \cos^2 A \right)\]
\[ = \left( \sin^2 A + \cos^2 A \right)^3 \]
\[ = 1^3 = 1\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: Trigonometric Functions - Exercise 5.5 [पृष्ठ ४२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 5 Trigonometric Functions
Exercise 5.5 | Q 11 | पृष्ठ ४२

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the principal and general solutions of the equation sec x = 2


Find the general solution of the equation sin 2x + cos x = 0


Find the general solution of the equation  sin x + sin 3x + sin 5x = 0


If \[x = \frac{2 \sin x}{1 + \cos x + \sin x}\], then prove that

\[\frac{1 - \cos x + \sin x}{1 + \sin x}\] is also equal to a.

If \[\tan x = \frac{b}{a}\] , then find the values of \[\sqrt{\frac{a + b}{a - b}} + \sqrt{\frac{a - b}{a + b}}\].


If \[cosec x - \sin x = a^3 , \sec x - \cos x = b^3\], then prove that \[a^2 b^2 \left( a^2 + b^2 \right) = 1\]


If \[a = \sec x - \tan x \text{ and }b = cosec x + \cot x\], then shown that  \[ab + a - b + 1 = 0\]


Prove the:
\[ \sqrt{\frac{1 - \sin x}{1 + \sin x}} + \sqrt{\frac{1 + \sin x}{1 - \sin x}} = - \frac{2}{\cos x},\text{ where }\frac{\pi}{2} < x < \pi\]


Prove that:  tan 225° cot 405° + tan 765° cot 675° = 0


Prove that

\[\frac{cosec(90^\circ + x) + \cot(450^\circ + x)}{cosec(90^\circ - x) + \tan(180^\circ - x)} + \frac{\tan(180^\circ + x) + \sec(180^\circ - x)}{\tan(360^\circ + x) - \sec( - x)} = 2\]

 


Prove that:

\[\sin\frac{10\pi}{3}\cos\frac{13\pi}{6} + \cos\frac{8\pi}{3}\sin\frac{5\pi}{6} = - 1\]

If tan x + sec x = \[\sqrt{3}\], 0 < x < π, then x is equal to


If \[\frac{3\pi}{4} < \alpha < \pi, \text{ then }\sqrt{2\cot \alpha + \frac{1}{\sin^2 \alpha}}\] is equal to


If \[cosec x - \cot x = \frac{1}{2}, 0 < x < \frac{\pi}{2},\]

 

\[\sec^2 x = \frac{4xy}{(x + y )^2}\] is true if and only if

 


sin2 π/18 + sin2 π/9 + sin2 7π/18 + sin2 4π/9 =


If tan A + cot A = 4, then tan4 A + cot4 A is equal to


Find the general solution of the following equation:

\[\sin x = \frac{1}{2}\]

Find the general solution of the following equation:

\[\sqrt{3} \sec x = 2\]

Find the general solution of the following equation:

\[\sin 2x = \cos 3x\]

Find the general solution of the following equation:

\[\tan 2x \tan x = 1\]

Find the general solution of the following equation:

\[\sin x = \tan x\]

Solve the following equation:
\[\sin^2 x - \cos x = \frac{1}{4}\]


Solve the following equation:

\[\cos x + \cos 2x + \cos 3x = 0\]

Solve the following equation:

\[\tan 3x + \tan x = 2\tan 2x\]

Solve the following equation:
\[2 \sin^2 x = 3\cos x, 0 \leq x \leq 2\pi\]


Solve the following equation:
 cosx + sin x = cos 2x + sin 2x

 


Write the number of solutions of the equation tan x + sec x = 2 cos x in the interval [0, 2π].


If cos x = k has exactly one solution in [0, 2π], then write the values(s) of k.

 

Write the number of points of intersection of the curves

\[2y = 1\] and \[y = \cos x, 0 \leq x \leq 2\pi\].
 

If \[2 \sin^2 x = 3\cos x\]. where \[0 \leq x \leq 2\pi\], then find the value of x.


If a is any real number, the number of roots of \[\cot x - \tan x = a\] in the first quadrant is (are).


In (0, π), the number of solutions of the equation ​ \[\tan x + \tan 2x + \tan 3x = \tan x \tan 2x \tan 3x\] is 


Solve the following equations:
`sin theta + sqrt(3) cos theta` = 1


Solve the following equations:
2cos 2x – 7 cos x + 3 = 0


Choose the correct alternative:
If tan α and tan β are the roots of x2 + ax + b = 0 then `(sin(alpha + beta))/(sin alpha sin beta)` is equal to


Choose the correct alternative:
If f(θ) = |sin θ| + |cos θ| , θ ∈ R, then f(θ) is in the interval


If sin θ and cos θ are the roots of the equation ax2 – bx + c = 0, then a, b and c satisfy the relation ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×