Advertisements
Advertisements
प्रश्न
If \[x = \frac{2 \sin x}{1 + \cos x + \sin x}\], then prove that
उत्तर
Disclaimer: There is some error in the given question.
The question should have been Question: If \[a = \frac{2 \sin x}{1 + \cos x + \sin x}\], then prove that \[\frac{1 - \cos x + \sin x}{1 + \sin x}\] is also equal to a.
So, the solution is done accordingly.
\[a = \frac{2\sin x}{1 + \sin x + \cos x}\]
Rationalising the denominator:
\[\frac{2\sin x}{1 + \sin x + \cos x} \times \frac{\left( 1 + \sin x \right) - \cos x}{\left( 1 + \sin x \right) - \cos x}\]
\[ = \frac{2\sin x\left\{ \left( 1 + \sin x \right) - \cos x \right\}}{\left( 1 + \sin x \right)^2 - \cos^2 x}\]
\[ = \frac{2\sin x\left\{ \left( 1 + \sin x \right) - \cos x \right\}}{1 + \sin^2 x + 2\sin x - \cos^2 x}\]
\[ = \frac{2\sin x\left\{ \left( 1 + \sin x \right) - \cos x \right\}}{2 \sin^2 x + 2\sin x}\]
\[ = \frac{2\sin x\left\{ \left( 1 + \sin x \right) - \cos x \right\}}{2\sin x\left( 1 + \sin x \right)}\]
\[ = \frac{\left( 1 + \sin x \right) - \cos x}{1 + \sin x}\]
\[ \therefore a = \frac{\left( 1 + \sin x \right) - \cos x}{1 + \sin x}\]
APPEARS IN
संबंधित प्रश्न
Find the general solution of the equation cos 3x + cos x – cos 2x = 0
Find the general solution for each of the following equations sec2 2x = 1– tan 2x
If \[\tan x = \frac{a}{b},\] show that
Prove that
In a ∆ABC, prove that:
cos (A + B) + cos C = 0
In a ∆ABC, prove that:
Find x from the following equations:
\[cosec\left( \frac{\pi}{2} + \theta \right) + x \cos \theta \cot\left( \frac{\pi}{2} + \theta \right) = \sin\left( \frac{\pi}{2} + \theta \right)\]
If \[\frac{\pi}{2} < x < \frac{3\pi}{2},\text{ then }\sqrt{\frac{1 - \sin x}{1 + \sin x}}\] is equal to
If \[0 < x < \frac{\pi}{2}\], and if \[\frac{y + 1}{1 - y} = \sqrt{\frac{1 + \sin x}{1 - \sin x}}\], then y is equal to
If tan x + sec x = \[\sqrt{3}\], 0 < x < π, then x is equal to
If tan \[x = - \frac{1}{\sqrt{5}}\] and θ lies in the IV quadrant, then the value of cos x is
sin2 π/18 + sin2 π/9 + sin2 7π/18 + sin2 4π/9 =
If A lies in second quadrant 3tan A + 4 = 0, then the value of 2cot A − 5cosA + sin A is equal to
Which of the following is incorrect?
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
\[\sin x + \cos x = \sqrt{2}\]
Solve the following equation:
`cosec x = 1 + cot x`
Solve the following equation:
\[\cot x + \tan x = 2\]
Solve the following equation:
\[5 \cos^2 x + 7 \sin^2 x - 6 = 0\]
If secx cos5x + 1 = 0, where \[0 < x \leq \frac{\pi}{2}\], find the value of x.
Write the number of solutions of the equation
\[4 \sin x - 3 \cos x = 7\]
Write the number of points of intersection of the curves
Write the values of x in [0, π] for which \[\sin 2x, \frac{1}{2}\]
and cos 2x are in A.P.
Find the principal solution and general solution of the following:
sin θ = `-1/sqrt(2)`
Solve the following equations:
2 cos2θ + 3 sin θ – 3 = θ
Solve the following equations:
`sin theta + sqrt(3) cos theta` = 1
Solve the following equations:
2cos 2x – 7 cos x + 3 = 0
If a cosθ + b sinθ = m and a sinθ - b cosθ = n, then show that a2 + b2 = m2 + n2
Find the general solution of the equation sinx – 3sin2x + sin3x = cosx – 3cos2x + cos3x