हिंदी

If X = 2 Sin X 1 + Cos X + Sin X , Then Prove that 1 − Cos X + Sin X 1 + Sin X is Also Equal to A. - Mathematics

Advertisements
Advertisements

प्रश्न

If \[x = \frac{2 \sin x}{1 + \cos x + \sin x}\], then prove that

\[\frac{1 - \cos x + \sin x}{1 + \sin x}\] is also equal to a.

उत्तर

Disclaimer: There is some error in the given question.
The question should have been Question: If \[a = \frac{2 \sin x}{1 + \cos x + \sin x}\], then prove that \[\frac{1 - \cos x + \sin x}{1 + \sin x}\] is also equal to a.
So, the solution is done accordingly.
\[a = \frac{2\sin x}{1 + \sin x + \cos x}\]
Rationalising the denominator: 
\[\frac{2\sin x}{1 + \sin x + \cos x} \times \frac{\left( 1 + \sin x \right) - \cos x}{\left( 1 + \sin x \right) - \cos x}\]
\[ = \frac{2\sin x\left\{ \left( 1 + \sin x \right) - \cos x \right\}}{\left( 1 + \sin x \right)^2 - \cos^2 x}\]
\[ = \frac{2\sin x\left\{ \left( 1 + \sin x \right) - \cos x \right\}}{1 + \sin^2 x + 2\sin x - \cos^2 x}\]
\[ = \frac{2\sin x\left\{ \left( 1 + \sin x \right) - \cos x \right\}}{2 \sin^2 x + 2\sin x}\]
\[ = \frac{2\sin x\left\{ \left( 1 + \sin x \right) - \cos x \right\}}{2\sin x\left( 1 + \sin x \right)}\]
\[ = \frac{\left( 1 + \sin x \right) - \cos x}{1 + \sin x}\]
\[ \therefore a = \frac{\left( 1 + \sin x \right) - \cos x}{1 + \sin x}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: Trigonometric Functions - Exercise 5.1 [पृष्ठ १८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 5 Trigonometric Functions
Exercise 5.1 | Q 17 | पृष्ठ १८

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the general solution of the equation cos 3x + cos x – cos 2x = 0


Find the general solution for each of the following equations sec2 2x = 1– tan 2x


If \[\tan x = \frac{a}{b},\] show that

\[\frac{a \sin x - b \cos x}{a \sin x + b \cos x} = \frac{a^2 - b^2}{a^2 + b^2}\]

Prove that

\[\frac{\sin(180^\circ + x) \cos(90^\circ + x) \tan(270^\circ - x) \cot(360^\circ - x)}{\sin(360^\circ - x) \cos(360^\circ + x) cosec( - x) \sin(270^\circ + x)} = 1\]

 


In a ∆ABC, prove that:
cos (A + B) + cos C = 0


In a ∆ABC, prove that:

\[\tan\frac{A + B}{2} = \cot\frac{C}{2}\]

Find x from the following equations:
\[cosec\left( \frac{\pi}{2} + \theta \right) + x \cos \theta \cot\left( \frac{\pi}{2} + \theta \right) = \sin\left( \frac{\pi}{2} + \theta \right)\]


If \[\frac{\pi}{2} < x < \frac{3\pi}{2},\text{ then }\sqrt{\frac{1 - \sin x}{1 + \sin x}}\] is equal to

 


If \[0 < x < \frac{\pi}{2}\], and if \[\frac{y + 1}{1 - y} = \sqrt{\frac{1 + \sin x}{1 - \sin x}}\], then y is equal to


If tan x + sec x = \[\sqrt{3}\], 0 < x < π, then x is equal to


If tan \[x = - \frac{1}{\sqrt{5}}\] and θ lies in the IV quadrant, then the value of cos x is

 

\[\sec^2 x = \frac{4xy}{(x + y )^2}\] is true if and only if

 


sin2 π/18 + sin2 π/9 + sin2 7π/18 + sin2 4π/9 =


If A lies in second quadrant 3tan A + 4 = 0, then the value of 2cot A − 5cosA + sin A is equal to


Which of the following is incorrect?


Find the general solution of the following equation:

\[\sqrt{3} \sec x = 2\]

Find the general solution of the following equation:

\[\sin 2x = \frac{\sqrt{3}}{2}\]

Find the general solution of the following equation:

\[\sin 2x = \cos 3x\]

Find the general solution of the following equation:

\[\tan 2x \tan x = 1\]

Solve the following equation:

\[3 \cos^2 x - 2\sqrt{3} \sin x \cos x - 3 \sin^2 x = 0\]

Solve the following equation:

\[\cos x \cos 2x \cos 3x = \frac{1}{4}\]

Solve the following equation:

\[\tan x + \tan 2x = \tan 3x\]

Solve the following equation:
\[\sin x + \cos x = \sqrt{2}\]


Solve the following equation:

`cosec  x = 1 + cot x`


Solve the following equation:
\[\cot x + \tan x = 2\]

 


Solve the following equation:
\[5 \cos^2 x + 7 \sin^2 x - 6 = 0\]


If secx cos5x + 1 = 0, where \[0 < x \leq \frac{\pi}{2}\], find the value of x.


Write the number of solutions of the equation
\[4 \sin x - 3 \cos x = 7\]


Write the number of points of intersection of the curves

\[2y = 1\] and \[y = \cos x, 0 \leq x \leq 2\pi\].
 

Write the values of x in [0, π] for which \[\sin 2x, \frac{1}{2}\]

 and cos 2x are in A.P.


Find the principal solution and general solution of the following:
sin θ = `-1/sqrt(2)`


Solve the following equations:
2 cos2θ + 3 sin θ – 3 = θ


Solve the following equations:
`sin theta + sqrt(3) cos theta` = 1


Solve the following equations:
2cos 2x – 7 cos x + 3 = 0


If a cosθ + b sinθ = m and a sinθ - b cosθ = n, then show that a2 + b2 = m2 + n2 


Find the general solution of the equation sinx – 3sin2x + sin3x = cosx – 3cos2x + cos3x


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×