Advertisements
Advertisements
प्रश्न
In a ∆ABC, prove that:
उत्तर
In ∆ ABC:
\[A + B + C = \pi\]
\[ \Rightarrow A + B = \pi - C\]
\[ \Rightarrow \frac{A + B}{2} = \frac{\pi - C}{2}\]
\[ \Rightarrow \frac{A + B}{2} = \frac{\pi}{2} - \frac{C}{2}\]
\[\text{ Now, LHS }= \tan\left( \frac{A + B}{2} \right) \]
\[ = \tan\left( \frac{\pi}{2} - \frac{C}{2} \right) \]
\[ = \cot\left( \frac{C}{2} \right) \left[ \because \tan\left( \frac{\pi}{2} - \theta \right) = \cot \theta \right] \]
= RHS
Hence proved.
APPEARS IN
संबंधित प्रश्न
If \[x = \frac{2 \sin x}{1 + \cos x + \sin x}\], then prove that
If \[\tan x = \frac{b}{a}\] , then find the values of \[\sqrt{\frac{a + b}{a - b}} + \sqrt{\frac{a - b}{a + b}}\].
Prove that
Prove that
In a ∆A, B, C, D be the angles of a cyclic quadrilateral, taken in order, prove that cos(180° − A) + cos (180° + B) + cos (180° + C) − sin (90° + D) = 0
Prove that:
\[\sin\frac{13\pi}{3}\sin\frac{8\pi}{3} + \cos\frac{2\pi}{3}\sin\frac{5\pi}{6} = \frac{1}{2}\]
Prove that:
If \[0 < x < \frac{\pi}{2}\], and if \[\frac{y + 1}{1 - y} = \sqrt{\frac{1 + \sin x}{1 - \sin x}}\], then y is equal to
If x = r sin θ cos ϕ, y = r sin θ sin ϕ and z = r cos θ, then x2 + y2 + z2 is independent of
If tan \[x = - \frac{1}{\sqrt{5}}\] and θ lies in the IV quadrant, then the value of cos x is
If \[cosec x + \cot x = \frac{11}{2}\], then tan x =
If x sin 45° cos2 60° = \[\frac{\tan^2 60^\circ cosec30^\circ}{\sec45^\circ \cot^{2^\circ} 30^\circ}\], then x =
If \[cosec x + \cot x = \frac{11}{2}\], then tan x =
The value of \[\cos1^\circ \cos2^\circ \cos3^\circ . . . \cos179^\circ\] is
The value of \[\tan1^\circ \tan2^\circ \tan3^\circ . . . \tan89^\circ\] is
Find the general solution of the following equation:
Find the general solution of the following equation:
Solve the following equation:
Solve the following equation:
If secx cos5x + 1 = 0, where \[0 < x \leq \frac{\pi}{2}\], find the value of x.
Write the number of points of intersection of the curves
If \[2 \sin^2 x = 3\cos x\]. where \[0 \leq x \leq 2\pi\], then find the value of x.
A solution of the equation \[\cos^2 x + \sin x + 1 = 0\], lies in the interval
The number of solution in [0, π/2] of the equation \[\cos 3x \tan 5x = \sin 7x\] is
In (0, π), the number of solutions of the equation \[\tan x + \tan 2x + \tan 3x = \tan x \tan 2x \tan 3x\] is
Find the principal solution and general solution of the following:
sin θ = `-1/sqrt(2)`
Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°
cos 2x = 1 − 3 sin x
Solve the following equations:
cos θ + cos 3θ = 2 cos 2θ
Solve the following equations:
sin θ + sin 3θ + sin 5θ = 0
Solve the following equations:
sin 2θ – cos 2θ – sin θ + cos θ = θ
Solve the following equations:
cot θ + cosec θ = `sqrt(3)`
Solve the following equations:
cos 2θ = `(sqrt(5) + 1)/4`
Choose the correct alternative:
If tan 40° = λ, then `(tan 140^circ - tan 130^circ)/(1 + tan 140^circ * tan 130^circ)` =
Solve the equation sin θ + sin 3θ + sin 5θ = 0
If 2sin2θ = 3cosθ, where 0 ≤ θ ≤ 2π, then find the value of θ.
The minimum value of 3cosx + 4sinx + 8 is ______.