Advertisements
Advertisements
प्रश्न
The value of \[\tan1^\circ \tan2^\circ \tan3^\circ . . . \tan89^\circ\] is
विकल्प
0
1
- \[\frac{1}{2}\]
not defined
उत्तर
We know that,
\[\tan\left( 90^\circ - \theta \right) = \cot\theta\]
So,
\[\tan89^\circ = \tan\left( 90^\circ - 1^\circ \right) = \cot1^\circ\]
\[\tan88^\circ = \tan\left( 90^\circ - 2^\circ \right) = \cot2^\circ\]
\[\tan87^\circ = \tan\left( 90^\circ - 3^\circ \right) = \cot3^\circ\]
. . . .
. . . .
\[\tan46^\circ = \tan\left( 90^\circ - 44^\circ \right) = \cot44^\circ\]
\[\therefore \tan1^\circ \tan2^\circ \tan3^\circ . . . \tan89^\circ\]
\[ = \tan1^\circ \tan2^\circ \tan3^\circ . . . \tan44^\circ \tan45^\circ \tan46^\circ . . . \tan87^\circ \tan88^\circ \tan89^\circ\]
\[ = \tan1^\circ \tan2^\circ \tan3^\circ . . . \tan44^\circ \tan45^\circ \cot44^\circ. . . \cot3^\circ \cot2^\circ \cot1^\circ\]
\[ = \left( \tan1^\circ\cot1^\circ \right)\left( \tan2^\circ\cot2^\circ \right) \left( \tan3^\circ\cot3^\circ \right) . . . \left( \tan44^\circ\cot44^\circ \right)\tan45^\circ\]
\[ = 1 \left( \tan45^\circ = 1\text{ and }\tan\theta\cot\theta = 1 \right)\]
Hence, the correct answer is option 1.
APPEARS IN
संबंधित प्रश्न
Find the principal and general solutions of the equation sec x = 2
Find the general solution for each of the following equations sec2 2x = 1– tan 2x
Prove that: tan 225° cot 405° + tan 765° cot 675° = 0
Prove that:
\[\frac{\cos (2\pi + x) cosec (2\pi + x) \tan (\pi/2 + x)}{\sec(\pi/2 + x)\cos x \cot(\pi + x)} = 1\]
Prove that:
\[\sec\left( \frac{3\pi}{2} - x \right)\sec\left( x - \frac{5\pi}{2} \right) + \tan\left( \frac{5\pi}{2} + x \right)\tan\left( x - \frac{3\pi}{2} \right) = - 1 .\]
Prove that:
\[\sin \frac{13\pi}{3}\sin\frac{2\pi}{3} + \cos\frac{4\pi}{3}\sin\frac{13\pi}{6} = \frac{1}{2}\]
If x is an acute angle and \[\tan x = \frac{1}{\sqrt{7}}\], then the value of \[\frac{{cosec}^2 x - \sec^2 x}{{cosec}^2 x + \sec^2 x}\] is
If sec x + tan x = k, cos x =
If \[f\left( x \right) = \cos^2 x + \sec^2 x\], then
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
\[5 \cos^2 x + 7 \sin^2 x - 6 = 0\]
Solve the following equation:
\[2^{\sin^2 x} + 2^{\cos^2 x} = 2\sqrt{2}\]
If cos x = k has exactly one solution in [0, 2π], then write the values(s) of k.
The smallest value of x satisfying the equation
A solution of the equation \[\cos^2 x + \sin x + 1 = 0\], lies in the interval
If \[4 \sin^2 x = 1\], then the values of x are
If \[e^{\sin x} - e^{- \sin x} - 4 = 0\], then x =
The equation \[3 \cos x + 4 \sin x = 6\] has .... solution.
If \[\sqrt{3} \cos x + \sin x = \sqrt{2}\] , then general value of x is
Find the principal solution and general solution of the following:
sin θ = `-1/sqrt(2)`
Find the principal solution and general solution of the following:
tan θ = `- 1/sqrt(3)`
Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°
2 cos2x + 1 = – 3 cos x
Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°
2 sin2x + 1 = 3 sin x
Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°
cos 2x = 1 − 3 sin x
Solve the following equations:
sin 2θ – cos 2θ – sin θ + cos θ = θ
Choose the correct alternative:
`(cos 6x + 6 cos 4x + 15cos x + 10)/(cos 5x + 5cs 3x + 10 cos x)` is equal to
Solve the equation sin θ + sin 3θ + sin 5θ = 0
Solve 2 tan2x + sec2x = 2 for 0 ≤ x ≤ 2π.
If 2sin2θ = 3cosθ, where 0 ≤ θ ≤ 2π, then find the value of θ.
Number of solutions of the equation tan x + sec x = 2 cosx lying in the interval [0, 2π] is ______.