Advertisements
Advertisements
प्रश्न
Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°
2 sin2x + 1 = 3 sin x
उत्तर
2 sin2x – 3 sin x + 1 = 0
2 sin2x – 2 sin x – sin x + 1 = 0
2 sin x (sin x – 1) – 1(sin x – 1) = 0
(2 sin x – 1)(sin x – 1) = 0
2 sin x – 1 = 0 or sin x – 1 = 0
sin x = `1/2` or sin x = 1
To find the solution of sin x = `1/2`
sin x = `1/2`
sin x = `sin (pi/6)`
The general solution is x = `"n"pi + (-1)^"n" pi/6`, n ∈ z
When n = 0, x = `0 + pi/6 = pi/6` ∈ (0°, 360°)
When n = 1, x = `pi - pi/6 = (6pi - pi)/6 = (5pi)/6` ∈ (0°, 360°)
When n = 2, x = `2pi + pi/6 = (12pi - pi)/6 = (13pi)/6` ∉ (0°, 360°)
To find the solution od sin x = 1
sin x = 1
sin x = `sin (pi/2)`
The general solution is x = `"n"pi + (-1)^"n" pi/2`, n ∈ z
When n = 0, x = `0 + pi/2 = pi/2` ∈ (0°, 360°)
When n = 1, x = `pi - pi/2 = (2pi - pi)/2 = pi/2` ∈ (0°, 360°)
When n = 2, x = `2pi + pi/2 = (4pi - pi)/2 = (5pi)/2` ∉ (0°, 360°)
∴ The required solutions are x = `pi/6, (5pi)/6, pi/2`
APPEARS IN
संबंधित प्रश्न
If \[T_n = \sin^n x + \cos^n x\], prove that \[\frac{T_3 - T_5}{T_1} = \frac{T_5 - T_7}{T_3}\]
If \[T_n = \sin^n x + \cos^n x\], prove that \[6 T_{10} - 15 T_8 + 10 T_6 - 1 = 0\]
Prove that
Prove that
In a ∆ABC, prove that:
sin6 A + cos6 A + 3 sin2 A cos2 A =
The value of sin25° + sin210° + sin215° + ... + sin285° + sin290° is
The value of \[\cos1^\circ \cos2^\circ \cos3^\circ . . . \cos179^\circ\] is
Find the general solution of the following equation:
Find the general solution of the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
\[\sqrt{3} \cos x + \sin x = 1\]
Solve the following equation:
\[5 \cos^2 x + 7 \sin^2 x - 6 = 0\]
Solve the following equation:
4sinx cosx + 2 sin x + 2 cosx + 1 = 0
If cos x = k has exactly one solution in [0, 2π], then write the values(s) of k.
Solve the following equations:
sin θ + sin 3θ + sin 5θ = 0
Choose the correct alternative:
If tan 40° = λ, then `(tan 140^circ - tan 130^circ)/(1 + tan 140^circ * tan 130^circ)` =
Solve `sqrt(3)` cos θ + sin θ = `sqrt(2)`
If 2sin2θ = 3cosθ, where 0 ≤ θ ≤ 2π, then find the value of θ.