हिंदी
तमिलनाडु बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान कक्षा ११

Solve the following equations for which solution lies in the interval 0° ≤ θ < 360° 2 sin2x + 1 = 3 sin x - Mathematics

Advertisements
Advertisements

प्रश्न

Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°

2 sin2x + 1 = 3 sin x

योग

उत्तर

2 sin2x – 3 sin x + 1 = 0

2 sin2x – 2 sin x – sin x + 1 = 0

2 sin x (sin x – 1) – 1(sin x – 1) = 0

(2 sin x – 1)(sin x – 1) = 0

2 sin x – 1 = 0 or sin x – 1 = 0

sin x = `1/2` or sin x = 1

To find the solution of sin x = `1/2`

sin x = `1/2`

sin x = `sin (pi/6)`

The general solution is x = `"n"pi + (-1)^"n"  pi/6`, n ∈ z

When n = 0, x = `0 + pi/6 = pi/6` ∈ (0°, 360°)

When n = 1, x = `pi - pi/6 = (6pi - pi)/6 = (5pi)/6` ∈ (0°, 360°)

When n = 2, x = `2pi + pi/6 = (12pi - pi)/6 = (13pi)/6` ∉ (0°, 360°)

To find the solution od sin x = 1

sin x = 1

sin x = `sin (pi/2)`

The general solution is x = `"n"pi + (-1)^"n"  pi/2`, n ∈ z

When n = 0, x = `0 + pi/2 = pi/2` ∈ (0°, 360°)

When n = 1, x = `pi - pi/2 = (2pi - pi)/2 = pi/2` ∈ (0°, 360°)

When n = 2, x = `2pi + pi/2 = (4pi - pi)/2 = (5pi)/2` ∉ (0°, 360°)

∴ The required solutions are x = `pi/6, (5pi)/6, pi/2` 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Trigonometry - Exercise 3.8 [पृष्ठ १३३]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 11 TN Board
अध्याय 3 Trigonometry
Exercise 3.8 | Q 2. (iii) | पृष्ठ १३३

संबंधित प्रश्न

If \[T_n = \sin^n x + \cos^n x\], prove that \[\frac{T_3 - T_5}{T_1} = \frac{T_5 - T_7}{T_3}\]

 


If \[T_n = \sin^n x + \cos^n x\], prove that \[6 T_{10} - 15 T_8 + 10 T_6 - 1 = 0\]


Prove that

\[\frac{cosec(90^\circ + x) + \cot(450^\circ + x)}{cosec(90^\circ - x) + \tan(180^\circ - x)} + \frac{\tan(180^\circ + x) + \sec(180^\circ - x)}{\tan(360^\circ + x) - \sec( - x)} = 2\]

 


Prove that

\[\frac{\sin(180^\circ + x) \cos(90^\circ + x) \tan(270^\circ - x) \cot(360^\circ - x)}{\sin(360^\circ - x) \cos(360^\circ + x) cosec( - x) \sin(270^\circ + x)} = 1\]

 


In a ∆ABC, prove that:

\[\tan\frac{A + B}{2} = \cot\frac{C}{2}\]

sin6 A + cos6 A + 3 sin2 A cos2 A =


The value of sin25° + sin210° + sin215° + ... + sin285° + sin290° is


The value of \[\cos1^\circ \cos2^\circ \cos3^\circ . . . \cos179^\circ\] is

 

Find the general solution of the following equation:

\[\sec x = \sqrt{2}\]

Find the general solution of the following equation:

\[\tan mx + \cot nx = 0\]

Solve the following equation:

\[\cos x + \cos 2x + \cos 3x = 0\]

Solve the following equation:

\[\sin x + \sin 2x + \sin 3x + \sin 4x = 0\]

Solve the following equation:

\[\sqrt{3} \cos x + \sin x = 1\]


Solve the following equation:
\[5 \cos^2 x + 7 \sin^2 x - 6 = 0\]


Solve the following equation:
4sinx cosx + 2 sin x + 2 cosx + 1 = 0 


If cos x = k has exactly one solution in [0, 2π], then write the values(s) of k.

 

Solve the following equations:
sin θ + sin 3θ + sin 5θ = 0


Choose the correct alternative:
If tan 40° = λ, then `(tan 140^circ - tan 130^circ)/(1 + tan 140^circ *  tan 130^circ)` =


Solve `sqrt(3)` cos θ + sin θ = `sqrt(2)`


If 2sin2θ = 3cosθ, where 0 ≤ θ ≤ 2π, then find the value of θ.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×