Advertisements
Advertisements
प्रश्न
Find the general solution of the following equation:
उत्तर
We have:
\[\sec x = \sqrt{2}\] (or)
APPEARS IN
संबंधित प्रश्न
If \[T_n = \sin^n x + \cos^n x\], prove that \[\frac{T_3 - T_5}{T_1} = \frac{T_5 - T_7}{T_3}\]
Prove that: \[\tan\frac{11\pi}{3} - 2\sin\frac{4\pi}{6} - \frac{3}{4} {cosec}^2 \frac{\pi}{4} + 4 \cos^2 \frac{17\pi}{6} = \frac{3 - 4\sqrt{3}}{2}\]
Prove that
Prove that
Prove that
Prove that:
\[\sin^2 \frac{\pi}{18} + \sin^2 \frac{\pi}{9} + \sin^2 \frac{7\pi}{18} + \sin^2 \frac{4\pi}{9} = 2\]
Prove that:
If tan x = \[x - \frac{1}{4x}\], then sec x − tan x is equal to
If tan x + sec x = \[\sqrt{3}\], 0 < x < π, then x is equal to
If x is an acute angle and \[\tan x = \frac{1}{\sqrt{7}}\], then the value of \[\frac{{cosec}^2 x - \sec^2 x}{{cosec}^2 x + \sec^2 x}\] is
If \[cosec x + \cot x = \frac{11}{2}\], then tan x =
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
\[\cot x + \tan x = 2\]
Solve the following equation:
\[\sec x\cos5x + 1 = 0, 0 < x < \frac{\pi}{2}\]
Solve the following equation:
\[5 \cos^2 x + 7 \sin^2 x - 6 = 0\]
Solve the following equation:
\[\sin x - 3\sin2x + \sin3x = \cos x - 3\cos2x + \cos3x\]
Solve the following equation:
3tanx + cot x = 5 cosec x
Write the number of solutions of the equation
\[4 \sin x - 3 \cos x = 7\]
Write the values of x in [0, π] for which \[\sin 2x, \frac{1}{2}\]
and cos 2x are in A.P.
If \[\tan px - \tan qx = 0\], then the values of θ form a series in
If \[\cot x - \tan x = \sec x\], then, x is equal to
If \[\sqrt{3} \cos x + \sin x = \sqrt{2}\] , then general value of x is
Find the principal solution and general solution of the following:
cot θ = `sqrt(3)`
Solve the following equations:
cos θ + cos 3θ = 2 cos 2θ
Solve the following equations:
`sin theta + sqrt(3) cos theta` = 1
Solve 2 tan2x + sec2x = 2 for 0 ≤ x ≤ 2π.
The minimum value of 3cosx + 4sinx + 8 is ______.
Number of solutions of the equation tan x + sec x = 2 cosx lying in the interval [0, 2π] is ______.