हिंदी

If Tan P X − Tan Q X = 0 , Then the Values of θ Form a Series in - Mathematics

Advertisements
Advertisements

प्रश्न

If \[\tan px - \tan qx = 0\], then the values of θ form a series in

 

विकल्प

  • AP

  • GP

  • HP

  •  none of these

MCQ
योग

उत्तर

AP
Given:
\[\tan px - \tan qx = 0\]
\[\Rightarrow \tan px = \tan qx\]
\[ \Rightarrow \frac{\sin px}{\cos px} = \frac{\sin qx}{\cos qx}\]
\[ \Rightarrow \sin px \cos qx = \sin qx \cos px\]
\[ \Rightarrow \frac{1}{2}\left[ \sin\left( \frac{p + q}{2} \right)x + \sin\left( \frac{p - q}{2} \right)x \right] = \frac{1}{2}\left[ \sin\left( \frac{q + p}{2} \right)x + \sin\left( \frac{q - p}{2} \right)x \right]\]
Now,
\[\sin A \cos B = \frac{1}{2}\left[ \sin\left( \frac{A + B}{2} \right) + \sin\left( \frac{A - B}{2} \right) \right]\]
\[\Rightarrow \sin \left( \frac{p - q}{2} \right)x = \sin \left( \frac{q - p}{2} \right)x\]
\[ \Rightarrow \sin \left( \frac{p - q}{2} \right)x = - \sin \left( \frac{p - q}{2} \right)x\]
\[ \Rightarrow 2 \sin \left( \frac{p - q}{2} \right)x = 0\]
\[ \Rightarrow \sin \left( \frac{p - q}{2} \right)x = 0\]
\[\Rightarrow \left( \frac{p - q}{2} \right)x = n\pi, n \in Z\]
\[ \Rightarrow x = \frac{2n\pi}{(p - q)}, n \in Z\]
Now, on putting the value of 
n, we get: \[n = 1, x = \frac{2\pi}{(p - q)}\]= a1

\[n = 2, x = \frac{4\pi}{(p - q)}\] = a2
\[n = 3, x = \frac{6\pi}{(p - q)}\] = a3
\[n = 4, x = \frac{8\pi}{(p - q)}\] = a4

And so on.
Also,
\[d = a_2 - a_1 = \frac{4\pi}{(p - q)} - \frac{2\pi}{(p - q)} = \frac{2\pi}{(p - q)}\]
\[d = a_3 - a_2 = \frac{6\pi}{(p - q)} - \frac{4\pi}{(p - q)} = \frac{2\pi}{(p - q)}\]
\[d = a_4 - a_3 = \frac{8\pi}{(p - q)} - \frac{6\pi}{( p - q)} = \frac{2\pi}{(p - q)}\]
And so on.
Thus, x forms a series in AP.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 11: Trigonometric equations - Exercise 11.3 [पृष्ठ २७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 11 Trigonometric equations
Exercise 11.3 | Q 3 | पृष्ठ २७

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

If \[\cot x \left( 1 + \sin x \right) = 4 m \text{ and }\cot x \left( 1 - \sin x \right) = 4 n,\] \[\left( m^2 + n^2 \right)^2 = mn\]


If \[a = \sec x - \tan x \text{ and }b = cosec x + \cot x\], then shown that  \[ab + a - b + 1 = 0\]


Prove the:
\[ \sqrt{\frac{1 - \sin x}{1 + \sin x}} + \sqrt{\frac{1 + \sin x}{1 - \sin x}} = - \frac{2}{\cos x},\text{ where }\frac{\pi}{2} < x < \pi\]


Prove that: cos 24° + cos 55° + cos 125° + cos 204° + cos 300° = \[\frac{1}{2}\]


Prove that: tan (−225°) cot (−405°) −tan (−765°) cot (675°) = 0


Prove that:cos 570° sin 510° + sin (−330°) cos (−390°) = 0

 


Prove that

\[\frac{cosec(90^\circ + x) + \cot(450^\circ + x)}{cosec(90^\circ - x) + \tan(180^\circ - x)} + \frac{\tan(180^\circ + x) + \sec(180^\circ - x)}{\tan(360^\circ + x) - \sec( - x)} = 2\]

 


Prove that:
\[\sin\frac{13\pi}{3}\sin\frac{8\pi}{3} + \cos\frac{2\pi}{3}\sin\frac{5\pi}{6} = \frac{1}{2}\]


Prove that:

\[\tan\frac{5\pi}{4}\cot\frac{9\pi}{4} + \tan\frac{17\pi}{4}\cot\frac{15\pi}{4} = 0\]

 


\[\sqrt{\frac{1 + \cos x}{1 - \cos x}}\] is equal to

 


If \[\frac{3\pi}{4} < \alpha < \pi, \text{ then }\sqrt{2\cot \alpha + \frac{1}{\sin^2 \alpha}}\] is equal to


If tan θ + sec θ =ex, then cos θ equals


If sec x + tan x = k, cos x =


The value of \[\cos1^\circ \cos2^\circ \cos3^\circ . . . \cos179^\circ\] is

 

Solve the following equation:

\[4 \sin^2 x - 8 \cos x + 1 = 0\]

Solve the following equation:

\[\sin x + \sin 2x + \sin 3x + \sin 4x = 0\]

Solve the following equation:

\[\sin 3x - \sin x = 4 \cos^2 x - 2\]

Solve the following equation:

\[\tan x + \tan 2x + \tan 3x = 0\]

Solve the following equation:
\[\sin x + \cos x = \sqrt{2}\]


Solve the following equation:
3tanx + cot x = 5 cosec x


Solve the following equation:
3 – 2 cos x – 4 sin x – cos 2x + sin 2x = 0


Write the set of values of a for which the equation

\[\sqrt{3} \sin x - \cos x = a\] has no solution.

If cos x = k has exactly one solution in [0, 2π], then write the values(s) of k.

 

Write the solution set of the equation 

\[\left( 2 \cos x + 1 \right) \left( 4 \cos x + 5 \right) = 0\] in the interval [0, 2π].

If \[3\tan\left( x - 15^\circ \right) = \tan\left( x + 15^\circ \right)\] \[0 < x < 90^\circ\], find θ.


If \[\cos x + \sqrt{3} \sin x = 2,\text{ then }x =\]

 


In (0, π), the number of solutions of the equation ​ \[\tan x + \tan 2x + \tan 3x = \tan x \tan 2x \tan 3x\] is 


The number of values of ​x in [0, 2π] that satisfy the equation \[\sin^2 x - \cos x = \frac{1}{4}\]


Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°

sin4x = sin2x


Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°

cos 2x = 1 − 3 sin x


Solve the following equations:
2 cos2θ + 3 sin θ – 3 = θ


Solve the following equations:
cos θ + cos 3θ = 2 cos 2θ


Solve the following equations:
sin 2θ – cos 2θ – sin θ + cos θ = θ


Solve the following equations:
`sin theta + sqrt(3) cos theta` = 1


Choose the correct alternative:
If tan 40° = λ, then `(tan 140^circ - tan 130^circ)/(1 + tan 140^circ *  tan 130^circ)` =


Choose the correct alternative:
If tan α and tan β are the roots of x2 + ax + b = 0 then `(sin(alpha + beta))/(sin alpha sin beta)` is equal to


If 2sin2θ = 3cosθ, where 0 ≤ θ ≤ 2π, then find the value of θ.


Find the general solution of the equation sinx – 3sin2x + sin3x = cosx – 3cos2x + cos3x


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×