Advertisements
Advertisements
प्रश्न
If \[a = \sec x - \tan x \text{ and }b = cosec x + \cot x\], then shown that \[ab + a - b + 1 = 0\]
उत्तर
\[a = \sec x - \tan x \text{ And, }b = cosec x + \cot x\]
\[ = \frac{1 - \sin x}{\cos x}\text{ And, }b = \frac{1 + \cos x}{\sin x}\]
Now, we have:
\[ab + a - b + 1\]
\[\left( \frac{1 - \sin x}{\cos x} \right)\left( \frac{1 + \cos x}{\sin x} \right) + \frac{1 - \sin x}{\cos x} - \left( \frac{1 + \cos x}{\sin x} \right) + 1\]
\[ = \frac{1 - \sin x + \cos x - \sin x \cos x + \sin x - \sin^2 x - \cos x - \cos^2 x + \sin x \cos x}{\sin x \cos x}\]
\[ = \frac{1 - \sin^2 x - \cos^2 x}{\sin x \cos x}\]
\[ = 0\]
APPEARS IN
संबंधित प्रश्न
Find the principal and general solutions of the equation sec x = 2
Find the general solution for each of the following equations sec2 2x = 1– tan 2x
If \[\sin x + \cos x = m\], then prove that \[\sin^6 x + \cos^6 x = \frac{4 - 3 \left( m^2 - 1 \right)^2}{4}\], where \[m^2 \leq 2\]
If \[T_n = \sin^n x + \cos^n x\], prove that \[\frac{T_3 - T_5}{T_1} = \frac{T_5 - T_7}{T_3}\]
If \[T_n = \sin^n x + \cos^n x\], prove that \[2 T_6 - 3 T_4 + 1 = 0\]
Prove that: cos 24° + cos 55° + cos 125° + cos 204° + cos 300° = \[\frac{1}{2}\]
Prove that:
Prove that:
\[\frac{\cos (2\pi + x) cosec (2\pi + x) \tan (\pi/2 + x)}{\sec(\pi/2 + x)\cos x \cot(\pi + x)} = 1\]
Prove that
Prove that:
\[\sin \frac{13\pi}{3}\sin\frac{2\pi}{3} + \cos\frac{4\pi}{3}\sin\frac{13\pi}{6} = \frac{1}{2}\]
If A lies in second quadrant 3tan A + 4 = 0, then the value of 2cot A − 5cosA + sin A is equal to
If tan θ + sec θ =ex, then cos θ equals
The value of \[\tan1^\circ \tan2^\circ \tan3^\circ . . . \tan89^\circ\] is
Which of the following is correct?
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Solve the following equation:
Solve the following equation:
\[\sqrt{3} \cos x + \sin x = 1\]
Solve the following equation:
sin x tan x – 1 = tan x – sin x
Solve the following equation:
3 – 2 cos x – 4 sin x – cos 2x + sin 2x = 0
Write the number of solutions of the equation
\[4 \sin x - 3 \cos x = 7\]
A solution of the equation \[\cos^2 x + \sin x + 1 = 0\], lies in the interval
The smallest positive angle which satisfies the equation
If \[e^{\sin x} - e^{- \sin x} - 4 = 0\], then x =
The equation \[3 \cos x + 4 \sin x = 6\] has .... solution.
General solution of \[\tan 5 x = \cot 2 x\] is
Find the principal solution and general solution of the following:
sin θ = `-1/sqrt(2)`
Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°
sin4x = sin2x
Solve the following equations:
sin θ + cos θ = `sqrt(2)`
Choose the correct alternative:
If tan 40° = λ, then `(tan 140^circ - tan 130^circ)/(1 + tan 140^circ * tan 130^circ)` =
Choose the correct alternative:
If cos pθ + cos qθ = 0 and if p ≠ q, then θ is equal to (n is any integer)
Find the general solution of the equation 5cos2θ + 7sin2θ – 6 = 0
Number of solutions of the equation tan x + sec x = 2 cosx lying in the interval [0, 2π] is ______.