Advertisements
Advertisements
प्रश्न
Prove that:
\[\frac{\cos (2\pi + x) cosec (2\pi + x) \tan (\pi/2 + x)}{\sec(\pi/2 + x)\cos x \cot(\pi + x)} = 1\]
उत्तर
LHS = \[\frac{\cos\left( 2\pi + x \right) cosec\left( 2\pi + x \right) \tan\left( \frac{\pi}{2} + x \right)}{\sec \left( \frac{\pi}{2} + x \right) \cos x \cot \left( \pi + x \right)}\]
\[ = \frac{\cos x cosec x \left[ - \cot x \right]}{\left[ - cosec x \right]\cos x \cot x} \]
\[ = \frac{- \cos x cosec x \cot x}{- cosec x cos x \cot x}\]
\[ = 1\]
= RHS
Hence proved.
APPEARS IN
संबंधित प्रश्न
Find the principal and general solutions of the equation `tan x = sqrt3`
Find the principal and general solutions of the equation `cot x = -sqrt3`
If \[T_n = \sin^n x + \cos^n x\], prove that \[2 T_6 - 3 T_4 + 1 = 0\]
Prove that
Prove that
In a ∆A, B, C, D be the angles of a cyclic quadrilateral, taken in order, prove that cos(180° − A) + cos (180° + B) + cos (180° + C) − sin (90° + D) = 0
Prove that:
\[\sin \frac{13\pi}{3}\sin\frac{2\pi}{3} + \cos\frac{4\pi}{3}\sin\frac{13\pi}{6} = \frac{1}{2}\]
sin6 A + cos6 A + 3 sin2 A cos2 A =
If A lies in second quadrant 3tan A + 4 = 0, then the value of 2cot A − 5cosA + sin A is equal to
If \[cosec x + \cot x = \frac{11}{2}\], then tan x =
If tan θ + sec θ =ex, then cos θ equals
If sec x + tan x = k, cos x =
The value of \[\cos1^\circ \cos2^\circ \cos3^\circ . . . \cos179^\circ\] is
Which of the following is correct?
Find the general solution of the following equation:
Find the general solution of the following equation:
Solve the following equation:
\[\sin^2 x - \cos x = \frac{1}{4}\]
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
\[2 \sin^2 x = 3\cos x, 0 \leq x \leq 2\pi\]
Solve the following equation:
3sin2x – 5 sin x cos x + 8 cos2 x = 2
Solve the following equation:
\[2^{\sin^2 x} + 2^{\cos^2 x} = 2\sqrt{2}\]
If secx cos5x + 1 = 0, where \[0 < x \leq \frac{\pi}{2}\], find the value of x.
Write the number of solutions of the equation tan x + sec x = 2 cos x in the interval [0, 2π].
The number of solution in [0, π/2] of the equation \[\cos 3x \tan 5x = \sin 7x\] is
If \[\sqrt{3} \cos x + \sin x = \sqrt{2}\] , then general value of x is
General solution of \[\tan 5 x = \cot 2 x\] is
Solve the following equations:
sin θ + sin 3θ + sin 5θ = 0
Solve the following equations:
cot θ + cosec θ = `sqrt(3)`
Solve the following equations:
`tan theta + tan (theta + pi/3) + tan (theta + (2pi)/3) = sqrt(3)`
Solve the following equations:
2cos 2x – 7 cos x + 3 = 0
Choose the correct alternative:
If tan α and tan β are the roots of x2 + ax + b = 0 then `(sin(alpha + beta))/(sin alpha sin beta)` is equal to
Number of solutions of the equation tan x + sec x = 2 cosx lying in the interval [0, 2π] is ______.