हिंदी

Solve the Following Equation: 2 Sin 2 X = 3 Cos X , 0 ≤ X ≤ 2 π - Mathematics

Advertisements
Advertisements

प्रश्न

Solve the following equation:
\[2 \sin^2 x = 3\cos x, 0 \leq x \leq 2\pi\]

योग

उत्तर

\[2 \sin^2 x = 3\cos x\]
\[ \Rightarrow 2\left( 1 - \cos^2 x \right) = 3\cos x\]
\[ \Rightarrow 2 \cos^2 x + 3\cos x - 2 = 0\]
\[ \Rightarrow \left( 2\cos x - 1 \right)\left( \cos x + 2 \right) = 0\]
\[\Rightarrow \cos x = \frac{1}{2} \text{ or }\cos x = - 2\]
But,
\[\cos x = - 2\]  is not possible.

\[\left( - 1 \leq \cos x \leq 1 \right)\]
`therefore cosx=1/2=cos  pi/3`
`=>x=2npi+-pi/3,nin Z`
Putting n = 0 and n = 1, we get
\[x = \frac{\pi}{3}, \frac{5\pi}{3} \left( 0 \leq x \leq 2\pi \right)\]

 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 11: Trigonometric equations - Exercise 11.1 [पृष्ठ २२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 11 Trigonometric equations
Exercise 11.1 | Q 7.2 | पृष्ठ २२

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the general solution of cosec x = –2


Find the general solution of the equation sin 2x + cos x = 0


If \[\tan x = \frac{a}{b},\] show that

\[\frac{a \sin x - b \cos x}{a \sin x + b \cos x} = \frac{a^2 - b^2}{a^2 + b^2}\]

Prove the:
\[ \sqrt{\frac{1 - \sin x}{1 + \sin x}} + \sqrt{\frac{1 + \sin x}{1 - \sin x}} = - \frac{2}{\cos x},\text{ where }\frac{\pi}{2} < x < \pi\]


Prove that:
\[\sec\left( \frac{3\pi}{2} - x \right)\sec\left( x - \frac{5\pi}{2} \right) + \tan\left( \frac{5\pi}{2} + x \right)\tan\left( x - \frac{3\pi}{2} \right) = - 1 .\]


In a ∆ABC, prove that:
cos (A + B) + cos C = 0


Prove that:
\[\sin\frac{13\pi}{3}\sin\frac{8\pi}{3} + \cos\frac{2\pi}{3}\sin\frac{5\pi}{6} = \frac{1}{2}\]


Prove that:
\[\sin \frac{13\pi}{3}\sin\frac{2\pi}{3} + \cos\frac{4\pi}{3}\sin\frac{13\pi}{6} = \frac{1}{2}\]


Prove that:

\[\sin\frac{10\pi}{3}\cos\frac{13\pi}{6} + \cos\frac{8\pi}{3}\sin\frac{5\pi}{6} = - 1\]

Prove that:

\[\tan\frac{5\pi}{4}\cot\frac{9\pi}{4} + \tan\frac{17\pi}{4}\cot\frac{15\pi}{4} = 0\]

 


If sec \[x = x + \frac{1}{4x}\], then sec x + tan x = 

 

\[\sqrt{\frac{1 + \cos x}{1 - \cos x}}\] is equal to

 


If \[cosec x - \cot x = \frac{1}{2}, 0 < x < \frac{\pi}{2},\]

 

sin2 π/18 + sin2 π/9 + sin2 7π/18 + sin2 4π/9 =


If x sin 45° cos2 60° = \[\frac{\tan^2 60^\circ cosec30^\circ}{\sec45^\circ \cot^{2^\circ} 30^\circ}\], then x =

 

If A lies in second quadrant 3tan A + 4 = 0, then the value of 2cot A − 5cosA + sin A is equal to


If \[cosec x + \cot x = \frac{11}{2}\], then tan x =

 


The value of \[\tan1^\circ \tan2^\circ \tan3^\circ . . . \tan89^\circ\] is

 

Solve the following equation:

\[2 \cos^2 x - 5 \cos x + 2 = 0\]

Solve the following equation:

\[\tan^2 x + \left( 1 - \sqrt{3} \right) \tan x - \sqrt{3} = 0\]

Solve the following equation:

\[\cos 4 x = \cos 2 x\]

Solve the following equation:

\[\sin x + \sin 5x = \sin 3x\]

Solve the following equation:

\[\tan x + \tan 2x + \tan 3x = 0\]

Solve the following equation:

`cosec  x = 1 + cot x`


Solve the following equation:
\[\cot x + \tan x = 2\]

 


Solve the following equation:
\[5 \cos^2 x + 7 \sin^2 x - 6 = 0\]


Solve the following equation:
4sinx cosx + 2 sin x + 2 cosx + 1 = 0 


Solve the following equation:
\[2^{\sin^2 x} + 2^{\cos^2 x} = 2\sqrt{2}\]


Write the set of values of a for which the equation

\[\sqrt{3} \sin x - \cos x = a\] has no solution.

If cos x = k has exactly one solution in [0, 2π], then write the values(s) of k.

 

Write the values of x in [0, π] for which \[\sin 2x, \frac{1}{2}\]

 and cos 2x are in A.P.


Write the solution set of the equation 

\[\left( 2 \cos x + 1 \right) \left( 4 \cos x + 5 \right) = 0\] in the interval [0, 2π].

The general value of x satisfying the equation
\[\sqrt{3} \sin x + \cos x = \sqrt{3}\]


General solution of \[\tan 5 x = \cot 2 x\] is


Find the principal solution and general solution of the following:
sin θ = `-1/sqrt(2)`


Choose the correct alternative:
If tan 40° = λ, then `(tan 140^circ - tan 130^circ)/(1 + tan 140^circ *  tan 130^circ)` =


Choose the correct alternative:
If cos pθ + cos qθ = 0 and if p ≠ q, then θ is equal to (n is any integer)


Choose the correct alternative:
If tan α and tan β are the roots of x2 + ax + b = 0 then `(sin(alpha + beta))/(sin alpha sin beta)` is equal to


Solve the equation sin θ + sin 3θ + sin 5θ = 0


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×