हिंदी

Solve the Following Equation: 2 Cos 2 X − 5 Cos X + 2 = 0 - Mathematics

Advertisements
Advertisements

प्रश्न

Solve the following equation:

\[2 \cos^2 x - 5 \cos x + 2 = 0\]
योग

उत्तर

\[2 \cos^2 x - 5 \cos x + 2 = 0\]

\[ \Rightarrow 2 \cos^2 x - 4 \cos x - \cos x + 2 = 0\]

\[ \Rightarrow 2 \cos x ( \cos x - 2) - 1 ( \cos x - 2) = 0\]

\[ \Rightarrow (\cos x - 2) ( 2 \cos\theta - 1) = 0\]

\[\Rightarrow ( \cos x - 2 ) = 0\] or
\[( 2 \cos x - 1) = 0\]
\[\cos x = 2\]  is not possible.

\[\therefore 2 \cos x - 1 = 0 \]

\[ \Rightarrow \cos x = \frac{1}{2} \]

\[ \Rightarrow \cos x = \cos \frac{\pi}{3} \]

\[ \Rightarrow x = 2n\pi \pm \frac{\pi}{3}, n \in Z\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 11: Trigonometric equations - Exercise 11.1 [पृष्ठ २२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 11 Trigonometric equations
Exercise 11.1 | Q 3.2 | पृष्ठ २२

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the general solution for each of the following equations sec2 2x = 1– tan 2x


If \[\tan x = \frac{b}{a}\] , then find the values of \[\sqrt{\frac{a + b}{a - b}} + \sqrt{\frac{a - b}{a + b}}\].


If \[T_n = \sin^n x + \cos^n x\], prove that \[6 T_{10} - 15 T_8 + 10 T_6 - 1 = 0\]


Prove that: cos 24° + cos 55° + cos 125° + cos 204° + cos 300° = \[\frac{1}{2}\]


Prove that:

\[3\sin\frac{\pi}{6}\sec\frac{\pi}{3} - 4\sin\frac{5\pi}{6}\cot\frac{\pi}{4} = 1\]

 


Prove that:
\[\sin^2 \frac{\pi}{18} + \sin^2 \frac{\pi}{9} + \sin^2 \frac{7\pi}{18} + \sin^2 \frac{4\pi}{9} = 2\]

 

In a ∆ABC, prove that:
cos (A + B) + cos C = 0


If tan x + sec x = \[\sqrt{3}\], 0 < x < π, then x is equal to


If \[cosec x + \cot x = \frac{11}{2}\], then tan x =

 


If x is an acute angle and \[\tan x = \frac{1}{\sqrt{7}}\], then the value of \[\frac{{cosec}^2 x - \sec^2 x}{{cosec}^2 x + \sec^2 x}\] is


The value of sin25° + sin210° + sin215° + ... + sin285° + sin290° is


Which of the following is correct?


Find the general solution of the following equation:

\[\sec x = \sqrt{2}\]

Find the general solution of the following equation:

\[\tan x = - \frac{1}{\sqrt{3}}\]

Find the general solution of the following equation:

\[\cos 3x = \frac{1}{2}\]

Find the general solution of the following equation:

\[\sin 9x = \sin x\]

Find the general solution of the following equation:

\[\sin 2x = \cos 3x\]

Find the general solution of the following equation:

\[\tan 3x = \cot x\]

Solve the following equation:

\[\tan^2 x + \left( 1 - \sqrt{3} \right) \tan x - \sqrt{3} = 0\]

Solve the following equation:

\[\sin x + \sin 5x = \sin 3x\]

Solve the following equation:

\[\cos x \cos 2x \cos 3x = \frac{1}{4}\]

Solve the following equation:

\[\cos x + \sin x = \cos 2x + \sin 2x\]

Solve the following equation:

\[\sin x + \sin 2x + \sin 3 = 0\]

Solve the following equation:

\[\tan x + \tan 2x = \tan 3x\]

Solve the following equation:

\[\tan 3x + \tan x = 2\tan 2x\]

Solve the following equation:
\[\sin x + \cos x = \sqrt{2}\]


Solve the following equation:

\[\sqrt{3} \cos x + \sin x = 1\]


Solve the following equation:

\[\sin x + \cos x = 1\]

Solve the following equation:
3sin2x – 5 sin x cos x + 8 cos2 x = 2


Write the general solutions of tan2 2x = 1.

 

If cos x = k has exactly one solution in [0, 2π], then write the values(s) of k.

 

Write the values of x in [0, π] for which \[\sin 2x, \frac{1}{2}\]

 and cos 2x are in A.P.


The number of values of x in the interval [0, 5 π] satisfying the equation \[3 \sin^2 x - 7 \sin x + 2 = 0\] is


Solve the following equations:
`sin theta + sqrt(3) cos theta` = 1


Choose the correct alternative:
If sin α + cos α = b, then sin 2α is equal to


Solve 2 tan2x + sec2x = 2 for 0 ≤ x ≤ 2π.


If sin θ and cos θ are the roots of the equation ax2 – bx + c = 0, then a, b and c satisfy the relation ______.


Find the general solution of the equation 5cos2θ + 7sin2θ – 6 = 0


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×