हिंदी

Find the general solution of the equation 5cos2θ + 7sin2θ – 6 = 0 - Mathematics

Advertisements
Advertisements

प्रश्न

Find the general solution of the equation 5cos2θ + 7sin2θ – 6 = 0

योग

उत्तर

5cos2θ + 7sin2θ – 6 = 0

We know that,

sin2θ = 1 – cos2θ

Therefore, 5cos2θ + 7(1 – cos2θ) – 6 = 0

⇒ 5cos2θ + 7 – 7cos2θ – 6 = 0

⇒ –2cos2θ + 1 = 0

⇒ cos2θ = `1/2`

Therefore, cosθ = `+- 1/sqrt(2)`

Therefore, cosθ = `cos  pi/4` or cosθ = `cos  (3pi)/4`

Since, the solution of cosx = cosα is given by,

x = 2mπ ± α ∀ m ∈ Z

θ = nπ ± `pi/4`, n ∈ Z

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Trigonometric Functions - Exercise [पृष्ठ ५५]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
अध्याय 3 Trigonometric Functions
Exercise | Q 27 | पृष्ठ ५५

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the principal and general solutions of the equation `tan x = sqrt3`


Find the general solution of cosec x = –2


If \[\tan x = \frac{a}{b},\] show that

\[\frac{a \sin x - b \cos x}{a \sin x + b \cos x} = \frac{a^2 - b^2}{a^2 + b^2}\]

Prove that:  tan 225° cot 405° + tan 765° cot 675° = 0


Prove that: tan (−225°) cot (−405°) −tan (−765°) cot (675°) = 0


Prove that: \[\tan\frac{11\pi}{3} - 2\sin\frac{4\pi}{6} - \frac{3}{4} {cosec}^2 \frac{\pi}{4} + 4 \cos^2 \frac{17\pi}{6} = \frac{3 - 4\sqrt{3}}{2}\]

 


In a ∆A, B, C, D be the angles of a cyclic quadrilateral, taken in order, prove that cos(180° − A) + cos (180° + B) + cos (180° + C) − sin (90° + D) = 0


\[\sqrt{\frac{1 + \cos x}{1 - \cos x}}\] is equal to

 


If x = r sin θ cos ϕ, y = r sin θ sin ϕ and r cos θ, then x2 + y2 + z2 is independent of


If \[cosec x + \cot x = \frac{11}{2}\], then tan x =

 


If A lies in second quadrant 3tan A + 4 = 0, then the value of 2cot A − 5cosA + sin A is equal to


Find the general solution of the following equation:

\[\cos 3x = \frac{1}{2}\]

Solve the following equation:

\[2 \sin^2 x + \sqrt{3} \cos x + 1 = 0\]

Solve the following equation:

\[4 \sin^2 x - 8 \cos x + 1 = 0\]

Solve the following equation:

\[\cos 4 x = \cos 2 x\]

Solve the following equation:

\[\cos x \cos 2x \cos 3x = \frac{1}{4}\]

Solve the following equation:

\[\sin 2x - \sin 4x + \sin 6x = 0\]

Solve the following equation:

\[\sin x + \cos x = 1\]

Solve the following equation:
\[2 \sin^2 x = 3\cos x, 0 \leq x \leq 2\pi\]


Write the general solutions of tan2 2x = 1.

 

Write the values of x in [0, π] for which \[\sin 2x, \frac{1}{2}\]

 and cos 2x are in A.P.


Write the solution set of the equation 

\[\left( 2 \cos x + 1 \right) \left( 4 \cos x + 5 \right) = 0\] in the interval [0, 2π].

If \[3\tan\left( x - 15^\circ \right) = \tan\left( x + 15^\circ \right)\] \[0 < x < 90^\circ\], find θ.


If \[\tan px - \tan qx = 0\], then the values of θ form a series in

 


The number of values of ​x in [0, 2π] that satisfy the equation \[\sin^2 x - \cos x = \frac{1}{4}\]


Solve the following equations:
cos θ + cos 3θ = 2 cos 2θ


Choose the correct alternative:
If tan 40° = λ, then `(tan 140^circ - tan 130^circ)/(1 + tan 140^circ *  tan 130^circ)` =


Choose the correct alternative:
If cos pθ + cos qθ = 0 and if p ≠ q, then θ is equal to (n is any integer)


Solve 2 tan2x + sec2x = 2 for 0 ≤ x ≤ 2π.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×