Advertisements
Advertisements
प्रश्न
Find the general solution of the equation 5cos2θ + 7sin2θ – 6 = 0
उत्तर
5cos2θ + 7sin2θ – 6 = 0
We know that,
sin2θ = 1 – cos2θ
Therefore, 5cos2θ + 7(1 – cos2θ) – 6 = 0
⇒ 5cos2θ + 7 – 7cos2θ – 6 = 0
⇒ –2cos2θ + 1 = 0
⇒ cos2θ = `1/2`
Therefore, cosθ = `+- 1/sqrt(2)`
Therefore, cosθ = `cos pi/4` or cosθ = `cos (3pi)/4`
Since, the solution of cosx = cosα is given by,
x = 2mπ ± α ∀ m ∈ Z
θ = nπ ± `pi/4`, n ∈ Z
APPEARS IN
संबंधित प्रश्न
Find the principal and general solutions of the equation `tan x = sqrt3`
Find the general solution of cosec x = –2
If \[\tan x = \frac{a}{b},\] show that
Prove that: tan 225° cot 405° + tan 765° cot 675° = 0
Prove that: tan (−225°) cot (−405°) −tan (−765°) cot (675°) = 0
Prove that: \[\tan\frac{11\pi}{3} - 2\sin\frac{4\pi}{6} - \frac{3}{4} {cosec}^2 \frac{\pi}{4} + 4 \cos^2 \frac{17\pi}{6} = \frac{3 - 4\sqrt{3}}{2}\]
In a ∆A, B, C, D be the angles of a cyclic quadrilateral, taken in order, prove that cos(180° − A) + cos (180° + B) + cos (180° + C) − sin (90° + D) = 0
If x = r sin θ cos ϕ, y = r sin θ sin ϕ and z = r cos θ, then x2 + y2 + z2 is independent of
If \[cosec x + \cot x = \frac{11}{2}\], then tan x =
If A lies in second quadrant 3tan A + 4 = 0, then the value of 2cot A − 5cosA + sin A is equal to
Find the general solution of the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
\[2 \sin^2 x = 3\cos x, 0 \leq x \leq 2\pi\]
Write the general solutions of tan2 2x = 1.
Write the values of x in [0, π] for which \[\sin 2x, \frac{1}{2}\]
and cos 2x are in A.P.
Write the solution set of the equation
If \[3\tan\left( x - 15^\circ \right) = \tan\left( x + 15^\circ \right)\] \[0 < x < 90^\circ\], find θ.
If \[\tan px - \tan qx = 0\], then the values of θ form a series in
The number of values of x in [0, 2π] that satisfy the equation \[\sin^2 x - \cos x = \frac{1}{4}\]
Solve the following equations:
cos θ + cos 3θ = 2 cos 2θ
Choose the correct alternative:
If tan 40° = λ, then `(tan 140^circ - tan 130^circ)/(1 + tan 140^circ * tan 130^circ)` =
Choose the correct alternative:
If cos pθ + cos qθ = 0 and if p ≠ q, then θ is equal to (n is any integer)
Solve 2 tan2x + sec2x = 2 for 0 ≤ x ≤ 2π.