हिंदी

In a ∆A, B, C, D Be the Angles of a Cyclic Quadrilateral, Taken in Order, Prove that Cos(180° − A) + Cos (180° + B) + Cos (180° + C) − Sin (90° + D) = 0 - Mathematics

Advertisements
Advertisements

प्रश्न

In a ∆A, B, C, D be the angles of a cyclic quadrilateral, taken in order, prove that cos(180° − A) + cos (180° + B) + cos (180° + C) − sin (90° + D) = 0

उत्तर

A, B, C and D are the angles of a cyclic quadrilateral. 
\[ \therefore A + C = 180^\circ and B + D = 180^\circ\]
\[ \Rightarrow A = 180 - C and B = 180 - D\]
\[\text{ Now, LHS }= \cos\left( 180^\circ - A \right) + \cos\left( 180^\circ + B \right) + \cos\left( 180^\circ + C \right) - \sin\left( 90^\circ + D \right)\]
\[ = - \cos A + \left[ - \cos B \right] + \left[ - \cos C \right] - \cos D\]
\[ = - \cos A - \cos B - \cos C - \cos D\]
\[ = - \cos\left( 180^\circ - C \right) - \cos\left( 180^\circ - D \right) - \cos C - \cos D\]
\[ = - \left[ - \cos C \right] - \left[ - \cos D \right] - \cos C - \cos D\]
\[ = \cos C + \cos D - \cos C - \cos D\]
\[ = 0\]
 = RHS
Hence proved.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: Trigonometric Functions - Exercise 5.3 [पृष्ठ ४०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 5 Trigonometric Functions
Exercise 5.3 | Q 7 | पृष्ठ ४०

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the principal and general solutions of the equation sec x = 2


Find the principal and general solutions of the equation  `cot x = -sqrt3`


If \[\tan x = \frac{b}{a}\] , then find the values of \[\sqrt{\frac{a + b}{a - b}} + \sqrt{\frac{a - b}{a + b}}\].


Prove the:
\[ \sqrt{\frac{1 - \sin x}{1 + \sin x}} + \sqrt{\frac{1 + \sin x}{1 - \sin x}} = - \frac{2}{\cos x},\text{ where }\frac{\pi}{2} < x < \pi\]


Prove that: cos 24° + cos 55° + cos 125° + cos 204° + cos 300° = \[\frac{1}{2}\]


Prove that: tan (−225°) cot (−405°) −tan (−765°) cot (675°) = 0


Prove that:

\[3\sin\frac{\pi}{6}\sec\frac{\pi}{3} - 4\sin\frac{5\pi}{6}\cot\frac{\pi}{4} = 1\]

 


Prove that:
\[\tan 4\pi - \cos\frac{3\pi}{2} - \sin\frac{5\pi}{6}\cos\frac{2\pi}{3} = \frac{1}{4}\]


Prove that:

\[\tan\frac{5\pi}{4}\cot\frac{9\pi}{4} + \tan\frac{17\pi}{4}\cot\frac{15\pi}{4} = 0\]

 


If sec \[x = x + \frac{1}{4x}\], then sec x + tan x = 

 

If \[\frac{\pi}{2} < x < \pi, \text{ then }\sqrt{\frac{1 - \sin x}{1 + \sin x}} + \sqrt{\frac{1 + \sin x}{1 - \sin x}}\] is equal to


If \[cosec x + \cot x = \frac{11}{2}\], then tan x =

 


\[\sec^2 x = \frac{4xy}{(x + y )^2}\] is true if and only if

 


The value of sin25° + sin210° + sin215° + ... + sin285° + sin290° is


The value of \[\cos1^\circ \cos2^\circ \cos3^\circ . . . \cos179^\circ\] is

 

Find the general solution of the following equation:

\[cosec x = - \sqrt{2}\]

Find the general solution of the following equation:

\[\sin 2x = \cos 3x\]

Find the general solution of the following equation:

\[\tan 3x = \cot x\]

Solve the following equation:

\[\cos x + \cos 3x - \cos 2x = 0\]

Solve the following equation:

\[\sin 3x - \sin x = 4 \cos^2 x - 2\]

Solve the following equation:
4sinx cosx + 2 sin x + 2 cosx + 1 = 0 


Solve the following equation:
3sin2x – 5 sin x cos x + 8 cos2 x = 2


If \[2 \sin^2 x = 3\cos x\]. where \[0 \leq x \leq 2\pi\], then find the value of x.


If \[\cot x - \tan x = \sec x\], then, x is equal to

 


In (0, π), the number of solutions of the equation ​ \[\tan x + \tan 2x + \tan 3x = \tan x \tan 2x \tan 3x\] is 


The number of values of ​x in [0, 2π] that satisfy the equation \[\sin^2 x - \cos x = \frac{1}{4}\]


If \[\sqrt{3} \cos x + \sin x = \sqrt{2}\] , then general value of x is


Find the principal solution and general solution of the following:
sin θ = `-1/sqrt(2)`


Solve the following equations:
cos θ + cos 3θ = 2 cos 2θ


Solve the following equations:
cot θ + cosec θ = `sqrt(3)`


Choose the correct alternative:
If cos pθ + cos qθ = 0 and if p ≠ q, then θ is equal to (n is any integer)


Choose the correct alternative:
If f(θ) = |sin θ| + |cos θ| , θ ∈ R, then f(θ) is in the interval


If a cosθ + b sinθ = m and a sinθ - b cosθ = n, then show that a2 + b2 = m2 + n2 


Find the general solution of the equation 5cos2θ + 7sin2θ – 6 = 0


Find the general solution of the equation sinx – 3sin2x + sin3x = cosx – 3cos2x + cos3x


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×