Advertisements
Advertisements
प्रश्न
If \[\sqrt{3} \cos x + \sin x = \sqrt{2}\] , then general value of x is
विकल्प
- \[n \pi + \left( - 1 \right)^n \frac{\pi}{4}, n \in Z\]
\[\left( - 1 \right)^n \frac{\pi}{4} - \frac{\pi}{3}, n \in Z\]
- \[n \pi + \frac{\pi}{4} - \frac{\pi}{3}, n \in Z\]
\[n \pi + \left( - 1 \right)^n \frac{\pi}{4} - \frac{\pi}{3}, n \in Z\]
उत्तर
\[n \pi + \left( - 1 \right)^n \frac{\pi}{4} - \frac{\pi}{3}, n \in Z\]
Given equation:
\[\sqrt{3}\cos x + \sin x = \sqrt{2}\] ...(i)
This is of the form \[a \cos x + b \sin x = c\], where
\[a = \sqrt{3} , b = 1\] and \[c = \sqrt{2}\].
Let: a = r sin α and b = r sin α.
Now,
\[r = \sqrt{a^2 + b^2} = \sqrt{(\sqrt{3} )^2 + 1^2} = 2\]
And,
\[\tan \alpha = \frac{a}{b} \]
\[ \Rightarrow \tan \alpha = \frac{\sqrt{3}}{1} \]
\[ \Rightarrow \tan \alpha = \tan \frac{\pi}{3} \]
\[ \Rightarrow \alpha = \frac{\pi}{3}\]
Putting
\[a = \sqrt{3} = r \sin \alpha\] and \[b = 1 = r \cos \alpha\] in equation (i), we get:
\[r \cos x \sin\alpha + r \sin x \cos\alpha = \sqrt{2}\]
\[ \Rightarrow r \sin (x + \alpha) = \sqrt{2}\]
\[ \Rightarrow 2 \sin (x + \alpha) = \sqrt{2}\]
\[ \Rightarrow \sin \left( x + \frac{\pi}{3} \right) = \frac{1}{\sqrt{2}}\]
\[ \Rightarrow \sin \left( x + \frac{\pi}{3} \right) = \cos \frac{\pi}{4}\]
\[ \Rightarrow x + \frac{\pi}{3} = n\pi + ( - 1 )^n \frac{\pi}{4}, n \in Z\]
\[ \Rightarrow x = n\pi + ( - 1 )^n \frac{\pi}{4} - \frac{\pi}{3}, n \in Z\]
APPEARS IN
संबंधित प्रश्न
Find the general solution of the equation cos 4 x = cos 2 x
Find the general solution of the equation sin x + sin 3x + sin 5x = 0
If \[x = \frac{2 \sin x}{1 + \cos x + \sin x}\], then prove that
If \[T_n = \sin^n x + \cos^n x\], prove that \[2 T_6 - 3 T_4 + 1 = 0\]
Prove that
Prove that:
\[\tan 4\pi - \cos\frac{3\pi}{2} - \sin\frac{5\pi}{6}\cos\frac{2\pi}{3} = \frac{1}{4}\]
Prove that:
\[\sin\frac{13\pi}{3}\sin\frac{8\pi}{3} + \cos\frac{2\pi}{3}\sin\frac{5\pi}{6} = \frac{1}{2}\]
Prove that:
\[\sin \frac{13\pi}{3}\sin\frac{2\pi}{3} + \cos\frac{4\pi}{3}\sin\frac{13\pi}{6} = \frac{1}{2}\]
Prove that:
If tan x = \[x - \frac{1}{4x}\], then sec x − tan x is equal to
If sec \[x = x + \frac{1}{4x}\], then sec x + tan x =
If tan x + sec x = \[\sqrt{3}\], 0 < x < π, then x is equal to
sin6 A + cos6 A + 3 sin2 A cos2 A =
sin2 π/18 + sin2 π/9 + sin2 7π/18 + sin2 4π/9 =
Which of the following is correct?
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
\[5 \cos^2 x + 7 \sin^2 x - 6 = 0\]
Solve the following equation:
\[\sin x - 3\sin2x + \sin3x = \cos x - 3\cos2x + \cos3x\]
Solve the following equation:
3sin2x – 5 sin x cos x + 8 cos2 x = 2
Solve the following equation:
\[2^{\sin^2 x} + 2^{\cos^2 x} = 2\sqrt{2}\]
If \[\cos x + \sqrt{3} \sin x = 2,\text{ then }x =\]
If \[\tan px - \tan qx = 0\], then the values of θ form a series in
The general solution of the equation \[7 \cos^2 x + 3 \sin^2 x = 4\] is
Find the principal solution and general solution of the following:
cot θ = `sqrt(3)`
Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°
sin4x = sin2x
Solve the following equations:
sin 2θ – cos 2θ – sin θ + cos θ = θ
Solve the following equations:
`sin theta + sqrt(3) cos theta` = 1
Solve the following equations:
`tan theta + tan (theta + pi/3) + tan (theta + (2pi)/3) = sqrt(3)`
Choose the correct alternative:
If tan 40° = λ, then `(tan 140^circ - tan 130^circ)/(1 + tan 140^circ * tan 130^circ)` =
Choose the correct alternative:
If cos pθ + cos qθ = 0 and if p ≠ q, then θ is equal to (n is any integer)
Solve 2 tan2x + sec2x = 2 for 0 ≤ x ≤ 2π.