Advertisements
Advertisements
प्रश्न
उत्तर
LHS =\[ \cos \left( 570^\circ \right)\sin \left( 510^\circ \right) + \sin \left( - 330^\circ \right)\cos \left( - 390^\circ \right)\]
\[ = \cos \left( 570^\circ \right) \sin \left( 510^\circ \right) + \left[ - \sin \left( 330^\circ \right) \right]\cos \left( 390^\circ \right) \left[ \because \sin\left( - x \right) = - \sin x and \cos\left( - x \right) = \cos x \right] \]
\[ = \cos \left( 570^\circ \right)\sin\left( 510^\circ \right) - \sin \left( 330^\circ\right)\]
\[ = \cos \left( 90^\circ \times 6 + 30^\circ \right) \sin \left( 90^\circ \times 5 + 60^\circ \right) - \sin \left( 90^\circ \times 3 + 60^\circ \right) \cos \left( 90^\circ \times 4 + 30^\circ \right)\]
\[ = - \cos \left( 30^\circ \right) \cos \left( 60^\circ \right) - \left[ - \cos \left( 60^\circ \right) \right] \cos \left( 30^\circ \right)\]
\[ = - \cos \left( 30^\circ \right) \cos \left( 60^\circ \right) + \cos \left( 30^\circ \right) \sin \left( 60^\circ \right)\]
\[ = 0\]
= RHS
Hence proved .
APPEARS IN
संबंधित प्रश्न
Find the general solution of the equation sin 2x + cos x = 0
Find the general solution for each of the following equations sec2 2x = 1– tan 2x
Find the general solution of the equation sin x + sin 3x + sin 5x = 0
If \[\cot x \left( 1 + \sin x \right) = 4 m \text{ and }\cot x \left( 1 - \sin x \right) = 4 n,\] \[\left( m^2 + n^2 \right)^2 = mn\]
Prove that: \[\tan\frac{11\pi}{3} - 2\sin\frac{4\pi}{6} - \frac{3}{4} {cosec}^2 \frac{\pi}{4} + 4 \cos^2 \frac{17\pi}{6} = \frac{3 - 4\sqrt{3}}{2}\]
Prove that
Prove that:
\[\sin\frac{13\pi}{3}\sin\frac{8\pi}{3} + \cos\frac{2\pi}{3}\sin\frac{5\pi}{6} = \frac{1}{2}\]
sin6 A + cos6 A + 3 sin2 A cos2 A =
If x is an acute angle and \[\tan x = \frac{1}{\sqrt{7}}\], then the value of \[\frac{{cosec}^2 x - \sec^2 x}{{cosec}^2 x + \sec^2 x}\] is
If tan A + cot A = 4, then tan4 A + cot4 A is equal to
If x sin 45° cos2 60° = \[\frac{\tan^2 60^\circ cosec30^\circ}{\sec45^\circ \cot^{2^\circ} 30^\circ}\], then x =
If \[cosec x + \cot x = \frac{11}{2}\], then tan x =
The value of \[\cos1^\circ \cos2^\circ \cos3^\circ . . . \cos179^\circ\] is
Find the general solution of the following equation:
Find the general solution of the following equation:
Solve the following equation:
\[\sin^2 x - \cos x = \frac{1}{4}\]
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
4sinx cosx + 2 sin x + 2 cosx + 1 = 0
Solve the following equation:
sin x tan x – 1 = tan x – sin x
If secx cos5x + 1 = 0, where \[0 < x \leq \frac{\pi}{2}\], find the value of x.
Write the number of solutions of the equation tan x + sec x = 2 cos x in the interval [0, 2π].
If cos x = k has exactly one solution in [0, 2π], then write the values(s) of k.
Write the number of points of intersection of the curves
A solution of the equation \[\cos^2 x + \sin x + 1 = 0\], lies in the interval
The number of solution in [0, π/2] of the equation \[\cos 3x \tan 5x = \sin 7x\] is
If \[\cot x - \tan x = \sec x\], then, x is equal to
General solution of \[\tan 5 x = \cot 2 x\] is
Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°
sin4x = sin2x
Solve the following equations:
cot θ + cosec θ = `sqrt(3)`
Choose the correct alternative:
If cos pθ + cos qθ = 0 and if p ≠ q, then θ is equal to (n is any integer)
Choose the correct alternative:
If tan α and tan β are the roots of x2 + ax + b = 0 then `(sin(alpha + beta))/(sin alpha sin beta)` is equal to
Number of solutions of the equation tan x + sec x = 2 cosx lying in the interval [0, 2π] is ______.