Advertisements
Advertisements
प्रश्न
Write the number of points of intersection of the curves
उत्तर
Given curves:
Now, \[2y = 1 \Rightarrow y = \frac{1}{2}\]
Also,
\[\cos x = y\]
\[ \Rightarrow \cos x = \frac{1}{2}\]
\[ \Rightarrow \cos x = \cos \left( \frac{\pi}{3} \right)\text{ and }\cos x = \cos \left( \frac{4\pi}{3} \right)\]
\[\Rightarrow x = 2n\pi \pm \frac{\pi}{3} \text{ or }x = 2n\pi \pm \frac{4\pi}{3}\]
By putting n = 0, we get:
\[x = \frac{\pi}{3}\text{ and }x = \frac{2\pi}{3}\]
For the other value of n, the value of x will not satisfy the given condition.
Hence, the number of points of intersection of the curves is two, i.e.,
\[\frac{\pi}{3}\text{ and }\frac{4\pi}{3}\]
APPEARS IN
संबंधित प्रश्न
Find the general solution of the equation cos 3x + cos x – cos 2x = 0
Find the general solution of the equation sin 2x + cos x = 0
If \[x = \frac{2 \sin x}{1 + \cos x + \sin x}\], then prove that
If \[\tan x = \frac{a}{b},\] show that
If \[cosec x - \sin x = a^3 , \sec x - \cos x = b^3\], then prove that \[a^2 b^2 \left( a^2 + b^2 \right) = 1\]
If \[\cot x \left( 1 + \sin x \right) = 4 m \text{ and }\cot x \left( 1 - \sin x \right) = 4 n,\] \[\left( m^2 + n^2 \right)^2 = mn\]
If \[\sin x + \cos x = m\], then prove that \[\sin^6 x + \cos^6 x = \frac{4 - 3 \left( m^2 - 1 \right)^2}{4}\], where \[m^2 \leq 2\]
If \[a = \sec x - \tan x \text{ and }b = cosec x + \cot x\], then shown that \[ab + a - b + 1 = 0\]
If \[T_n = \sin^n x + \cos^n x\], prove that \[\frac{T_3 - T_5}{T_1} = \frac{T_5 - T_7}{T_3}\]
Prove that: cos 24° + cos 55° + cos 125° + cos 204° + cos 300° = \[\frac{1}{2}\]
Prove that:
\[\sin^2 \frac{\pi}{18} + \sin^2 \frac{\pi}{9} + \sin^2 \frac{7\pi}{18} + \sin^2 \frac{4\pi}{9} = 2\]
In a ∆ABC, prove that:
Prove that:
\[\tan 4\pi - \cos\frac{3\pi}{2} - \sin\frac{5\pi}{6}\cos\frac{2\pi}{3} = \frac{1}{4}\]
sin2 π/18 + sin2 π/9 + sin2 7π/18 + sin2 4π/9 =
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
\[\sin x - 3\sin2x + \sin3x = \cos x - 3\cos2x + \cos3x\]
Solve the following equation:
cosx + sin x = cos 2x + sin 2x
Write the number of solutions of the equation tan x + sec x = 2 cos x in the interval [0, 2π].
The smallest value of x satisfying the equation
If \[4 \sin^2 x = 1\], then the values of x are
If \[e^{\sin x} - e^{- \sin x} - 4 = 0\], then x =
If \[\sqrt{3} \cos x + \sin x = \sqrt{2}\] , then general value of x is
Find the principal solution and general solution of the following:
tan θ = `- 1/sqrt(3)`
Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°
sin4x = sin2x
Solve the following equations:
sin 5x − sin x = cos 3
Solve the following equations:
sin 2θ – cos 2θ – sin θ + cos θ = θ
Choose the correct alternative:
If cos pθ + cos qθ = 0 and if p ≠ q, then θ is equal to (n is any integer)
Solve 2 tan2x + sec2x = 2 for 0 ≤ x ≤ 2π.
Number of solutions of the equation tan x + sec x = 2 cosx lying in the interval [0, 2π] is ______.