Advertisements
Advertisements
प्रश्न
Solve the following equations:
sin 5x − sin x = cos 3
उत्तर
`2cos ((5x + x)/2) * sin((5x - x)/2)` = cos 3x
`2 cos (6x/2) * sin (4x/2)` = cos 3x
2 cos 3 x . sin 2x = cos 3x
2 cos 3x . sin 2x – cos 3x = 0
cos 3x (2 sin 2x – 1) = 0
cos 3x = 0 or 2 sin 2x – 1 = 0
cos 3x = 0 or sin 2x = `1/2`
To find the general solution of cos 3x = 0
The general solution of cos 3x = 0 is
3x = `(2"n" + 1)^(pi/2)`, n ∈ Z
x = `(2"n" + 1)^(pi/6)`, n ∈ Z
To find the general solution of sin 2x = `1/2`
sin 2x = `1/2`
sin 2x = `sin (pi/6)`
The general solution is
2x = `"n"pi + (- 1)^"n" pi/6`, n ∈ Z
x = `("n"pi)/2 + (- 1)^"n" pi/12`, n ∈ Z
∴ The required solutions are
x = `(2"n" + 1) pi/6`, n ∈ Z
x = `("n"pi)/2 + (- 1)^"n" pi/12`, n ∈ Z
APPEARS IN
संबंधित प्रश्न
Prove that: tan 225° cot 405° + tan 765° cot 675° = 0
Prove that:
Prove that
In a ∆ABC, prove that:
cos (A + B) + cos C = 0
If \[\frac{\pi}{2} < x < \pi, \text{ then }\sqrt{\frac{1 - \sin x}{1 + \sin x}} + \sqrt{\frac{1 + \sin x}{1 - \sin x}}\] is equal to
If \[cosec x - \cot x = \frac{1}{2}, 0 < x < \frac{\pi}{2},\]
If x sin 45° cos2 60° = \[\frac{\tan^2 60^\circ cosec30^\circ}{\sec45^\circ \cot^{2^\circ} 30^\circ}\], then x =
Find the general solution of the following equation:
Find the general solution of the following equation:
Solve the following equation:
Solve the following equation:
\[2 \sin^2 x = 3\cos x, 0 \leq x \leq 2\pi\]
If secx cos5x + 1 = 0, where \[0 < x \leq \frac{\pi}{2}\], find the value of x.
Write the number of points of intersection of the curves
If \[3\tan\left( x - 15^\circ \right) = \tan\left( x + 15^\circ \right)\] \[0 < x < 90^\circ\], find θ.
The smallest positive angle which satisfies the equation
The number of values of x in [0, 2π] that satisfy the equation \[\sin^2 x - \cos x = \frac{1}{4}\]
Solve the following equations:
sin θ + sin 3θ + sin 5θ = 0
Choose the correct alternative:
If f(θ) = |sin θ| + |cos θ| , θ ∈ R, then f(θ) is in the interval
In a triangle ABC with ∠C = 90° the equation whose roots are tan A and tan B is ______.