हिंदी
तमिलनाडु बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान कक्षा ११

Solve the following equations:sin 5x − sin x = cos 3 - Mathematics

Advertisements
Advertisements

प्रश्न

Solve the following equations:
sin 5x − sin x = cos 3

योग

उत्तर

`2cos ((5x + x)/2) * sin((5x - x)/2)` = cos 3x

`2 cos (6x/2) * sin (4x/2)` = cos 3x

2 cos 3 x . sin 2x = cos 3x

2 cos 3x . sin 2x – cos 3x = 0

cos 3x (2 sin 2x – 1) = 0

cos 3x = 0 or 2 sin 2x – 1 = 0

cos 3x = 0 or sin 2x = `1/2`

To find the general solution of cos 3x = 0

The general solution of cos 3x = 0 is

3x = `(2"n" + 1)^(pi/2)`, n ∈ Z

x = `(2"n" + 1)^(pi/6)`, n ∈ Z

To find the general solution of sin 2x = `1/2`

sin 2x = `1/2`

sin 2x = `sin (pi/6)`

The general solution is

2x = `"n"pi + (- 1)^"n"  pi/6`, n ∈ Z

x = `("n"pi)/2 + (- 1)^"n"  pi/12`, n ∈ Z

∴ The required solutions are

x = `(2"n" + 1)  pi/6`, n ∈ Z

x = `("n"pi)/2 + (- 1)^"n"  pi/12`, n ∈ Z

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Trigonometry - Exercise 3.8 [पृष्ठ १३३]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 11 TN Board
अध्याय 3 Trigonometry
Exercise 3.8 | Q 3. (i) | पृष्ठ १३३

संबंधित प्रश्न

Prove that:  tan 225° cot 405° + tan 765° cot 675° = 0


Prove that:

\[\sin\frac{8\pi}{3}\cos\frac{23\pi}{6} + \cos\frac{13\pi}{3}\sin\frac{35\pi}{6} = \frac{1}{2}\]

 


Prove that

\[\frac{\sin(180^\circ + x) \cos(90^\circ + x) \tan(270^\circ - x) \cot(360^\circ - x)}{\sin(360^\circ - x) \cos(360^\circ + x) cosec( - x) \sin(270^\circ + x)} = 1\]

 


In a ∆ABC, prove that:
cos (A + B) + cos C = 0


\[\sqrt{\frac{1 + \cos x}{1 - \cos x}}\] is equal to

 


If \[\frac{\pi}{2} < x < \pi, \text{ then }\sqrt{\frac{1 - \sin x}{1 + \sin x}} + \sqrt{\frac{1 + \sin x}{1 - \sin x}}\] is equal to


If \[cosec x - \cot x = \frac{1}{2}, 0 < x < \frac{\pi}{2},\]

 

If x sin 45° cos2 60° = \[\frac{\tan^2 60^\circ cosec30^\circ}{\sec45^\circ \cot^{2^\circ} 30^\circ}\], then x =

 

Find the general solution of the following equation:

\[\cos x = - \frac{\sqrt{3}}{2}\]

Find the general solution of the following equation:

\[\cos 3x = \frac{1}{2}\]

Solve the following equation:

\[\sin x + \sin 5x = \sin 3x\]

Solve the following equation:
\[2 \sin^2 x = 3\cos x, 0 \leq x \leq 2\pi\]


If secx cos5x + 1 = 0, where \[0 < x \leq \frac{\pi}{2}\], find the value of x.


Write the number of points of intersection of the curves

\[2y = 1\] and \[y = \cos x, 0 \leq x \leq 2\pi\].
 

If \[3\tan\left( x - 15^\circ \right) = \tan\left( x + 15^\circ \right)\] \[0 < x < 90^\circ\], find θ.


The smallest positive angle which satisfies the equation ​

\[2 \sin^2 x + \sqrt{3} \cos x + 1 = 0\] is

The number of values of ​x in [0, 2π] that satisfy the equation \[\sin^2 x - \cos x = \frac{1}{4}\]


Solve the following equations:
sin θ + sin 3θ + sin 5θ = 0


Choose the correct alternative:
If f(θ) = |sin θ| + |cos θ| , θ ∈ R, then f(θ) is in the interval


In a triangle ABC with ∠C = 90° the equation whose roots are tan A and tan B is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×