हिंदी

If X Sin 45° Cos2 60° = Tan 2 60 ∘ C O S E C 30 ∘ Sec 45 ∘ Cot 2 ∘ 30 ∘ , Then X = - Mathematics

Advertisements
Advertisements

प्रश्न

If x sin 45° cos2 60° = \[\frac{\tan^2 60^\circ cosec30^\circ}{\sec45^\circ \cot^{2^\circ} 30^\circ}\], then x =

 

विकल्प

  • 2

  • 4

  • 8

  • 16

MCQ

उत्तर

8
We have: 
\[x \sin 45^\circ\cos^2 60^\circ = \frac{\tan^2 60^\circ cosec 30^\circ}{\sec45^\circ \cot^2 30^\circ}\]

\[ \Rightarrow x \times \left( \frac{1}{\sqrt{2}} \right) \times \left( \frac{1}{2} \right)^2 = \frac{\left( \sqrt{3} \right)^2 \times \left( 2 \right)}{\left( \sqrt{2} \right) \times \left( \sqrt{3} \right)^2}\]

\[ \Rightarrow \frac{x}{4\sqrt{2}} = \frac{6}{3\sqrt{2}}\]

\[ \Rightarrow x = \frac{6}{3\sqrt{2}} \times 4\sqrt{2}\]

\[ \Rightarrow x = 8\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: Trigonometric Functions - Exercise 5.5 [पृष्ठ ४२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 5 Trigonometric Functions
Exercise 5.5 | Q 19 | पृष्ठ ४२

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the general solution for each of the following equations sec2 2x = 1– tan 2x


If \[x = \frac{2 \sin x}{1 + \cos x + \sin x}\], then prove that

\[\frac{1 - \cos x + \sin x}{1 + \sin x}\] is also equal to a.

Prove that

\[\frac{\tan (90^\circ - x) \sec(180^\circ - x) \sin( - x)}{\sin(180^\circ + x) \cot(360^\circ - x) cosec(90^\circ - x)} = 1\]

 


In a ∆ABC, prove that:

\[\tan\frac{A + B}{2} = \cot\frac{C}{2}\]

In a ∆A, B, C, D be the angles of a cyclic quadrilateral, taken in order, prove that cos(180° − A) + cos (180° + B) + cos (180° + C) − sin (90° + D) = 0


Prove that:
\[\sin \frac{13\pi}{3}\sin\frac{2\pi}{3} + \cos\frac{4\pi}{3}\sin\frac{13\pi}{6} = \frac{1}{2}\]


Prove that:

\[\tan\frac{5\pi}{4}\cot\frac{9\pi}{4} + \tan\frac{17\pi}{4}\cot\frac{15\pi}{4} = 0\]

 


If tan x = \[x - \frac{1}{4x}\], then sec x − tan x is equal to


If sec \[x = x + \frac{1}{4x}\], then sec x + tan x = 

 

If \[\frac{\pi}{2} < x < \frac{3\pi}{2},\text{ then }\sqrt{\frac{1 - \sin x}{1 + \sin x}}\] is equal to

 


If \[0 < x < \frac{\pi}{2}\], and if \[\frac{y + 1}{1 - y} = \sqrt{\frac{1 + \sin x}{1 - \sin x}}\], then y is equal to


If \[\frac{\pi}{2} < x < \pi, \text{ then }\sqrt{\frac{1 - \sin x}{1 + \sin x}} + \sqrt{\frac{1 + \sin x}{1 - \sin x}}\] is equal to


If sec x + tan x = k, cos x =


Find the general solution of the following equation:

\[\sin x = \frac{1}{2}\]

Find the general solution of the following equation:

\[cosec x = - \sqrt{2}\]

Find the general solution of the following equation:

\[\sec x = \sqrt{2}\]

Find the general solution of the following equation:

\[\tan x = - \frac{1}{\sqrt{3}}\]

Find the general solution of the following equation:

\[\sin 2x = \frac{\sqrt{3}}{2}\]

Find the general solution of the following equation:

\[\tan 3x = \cot x\]

Find the general solution of the following equation:

\[\tan px = \cot qx\]

 


Solve the following equation:

\[\sin x + \sin 5x = \sin 3x\]

Solve the following equation:

\[\sin 3x - \sin x = 4 \cos^2 x - 2\]

Solve the following equation:

\[\tan x + \tan 2x + \tan 3x = 0\]

Solve the following equation:
\[\sec x\cos5x + 1 = 0, 0 < x < \frac{\pi}{2}\]


Solve the following equation:
 cosx + sin x = cos 2x + sin 2x

 


Write the number of values of x in [0, 2π] that satisfy the equation \[\sin x - \cos x = \frac{1}{4}\].


If \[3\tan\left( x - 15^\circ \right) = \tan\left( x + 15^\circ \right)\] \[0 < x < 90^\circ\], find θ.


If a is any real number, the number of roots of \[\cot x - \tan x = a\] in the first quadrant is (are).


If \[\sqrt{3} \cos x + \sin x = \sqrt{2}\] , then general value of x is


General solution of \[\tan 5 x = \cot 2 x\] is


If \[\cos x = - \frac{1}{2}\] and 0 < x < 2\pi, then the solutions are


Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°

cos 2x = 1 − 3 sin x


Solve the following equations:
cot θ + cosec θ = `sqrt(3)`


Choose the correct alternative:
If f(θ) = |sin θ| + |cos θ| , θ ∈ R, then f(θ) is in the interval


Choose the correct alternative:
If sin α + cos α = b, then sin 2α is equal to


Solve `sqrt(3)` cos θ + sin θ = `sqrt(2)`


If sin θ and cos θ are the roots of the equation ax2 – bx + c = 0, then a, b and c satisfy the relation ______.


If a cosθ + b sinθ = m and a sinθ - b cosθ = n, then show that a2 + b2 = m2 + n2 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×