Advertisements
Advertisements
प्रश्न
Prove that
उत्तर
LHS =\[ \frac{\tan \left( 90^\circ - x \right) \sec \left( 180^\circ - x \right) \sin \left( - x \right)}{\sin\left( 180^\circ + x \right)\cot \left( 360^\circ - x \right)cosec \left( 90^\circ - x \right)} \]
\[ = \frac{\tan \left( 90^\circ \times 1 - x \right) \sec \left( 90^\circ \times 2 - x \right)\sin \left( - x \right)}{\sin \left( 90^\circ \times 2 + x \right) \cot \left( 90^\circ \times 4 - x \right)cosec \left( 90^\circ \times 1 - x \right)}\]
\[ = \frac{\cot x\left[ - \sec x \right]\left[ - \sin x \right]}{\left[ - \sin x \right]\left[ - \cot x \right] \sec x}\]
\[ = \frac{\cot x \sec x \sin x}{\sin x \cot x \sec x}\]
\[ = \frac{\frac{\cos x}{\sin x} \times \frac{1}{\cos x} \times \sin x}{\sin x \times \frac{\cos x}{\sin x} \times \frac{1}{\cos x}}\]
\[ = \frac{1}{1}\]
\[ = 1\]
= RHS
Hence proved.
APPEARS IN
संबंधित प्रश्न
Find the principal and general solutions of the equation sec x = 2
Find the principal and general solutions of the equation `cot x = -sqrt3`
Find the general solution of the equation sin x + sin 3x + sin 5x = 0
If \[\sin x + \cos x = m\], then prove that \[\sin^6 x + \cos^6 x = \frac{4 - 3 \left( m^2 - 1 \right)^2}{4}\], where \[m^2 \leq 2\]
If \[T_n = \sin^n x + \cos^n x\], prove that \[6 T_{10} - 15 T_8 + 10 T_6 - 1 = 0\]
Prove that:
Prove that:
Prove that:
\[\frac{\cos (2\pi + x) cosec (2\pi + x) \tan (\pi/2 + x)}{\sec(\pi/2 + x)\cos x \cot(\pi + x)} = 1\]
Prove that
Prove that:
\[\sec\left( \frac{3\pi}{2} - x \right)\sec\left( x - \frac{5\pi}{2} \right) + \tan\left( \frac{5\pi}{2} + x \right)\tan\left( x - \frac{3\pi}{2} \right) = - 1 .\]
In a ∆ABC, prove that:
cos (A + B) + cos C = 0
In a ∆ABC, prove that:
Find x from the following equations:
\[cosec\left( \frac{\pi}{2} + \theta \right) + x \cos \theta \cot\left( \frac{\pi}{2} + \theta \right) = \sin\left( \frac{\pi}{2} + \theta \right)\]
If \[0 < x < \frac{\pi}{2}\], and if \[\frac{y + 1}{1 - y} = \sqrt{\frac{1 + \sin x}{1 - \sin x}}\], then y is equal to
If \[\frac{\pi}{2} < x < \pi, \text{ then }\sqrt{\frac{1 - \sin x}{1 + \sin x}} + \sqrt{\frac{1 + \sin x}{1 - \sin x}}\] is equal to
sin2 π/18 + sin2 π/9 + sin2 7π/18 + sin2 4π/9 =
If tan A + cot A = 4, then tan4 A + cot4 A is equal to
If x sin 45° cos2 60° = \[\frac{\tan^2 60^\circ cosec30^\circ}{\sec45^\circ \cot^{2^\circ} 30^\circ}\], then x =
Which of the following is incorrect?
The value of \[\cos1^\circ \cos2^\circ \cos3^\circ . . . \cos179^\circ\] is
The value of \[\tan1^\circ \tan2^\circ \tan3^\circ . . . \tan89^\circ\] is
Solve the following equation:
\[\sin x + \cos x = \sqrt{2}\]
Solve the following equation:
Solve the following equation:
\[2 \sin^2 x = 3\cos x, 0 \leq x \leq 2\pi\]
Solve the following equation:
\[\sec x\cos5x + 1 = 0, 0 < x < \frac{\pi}{2}\]
Solve the following equation:
\[\sin x - 3\sin2x + \sin3x = \cos x - 3\cos2x + \cos3x\]
Solve the following equation:
4sinx cosx + 2 sin x + 2 cosx + 1 = 0
Solve the following equation:
sin x tan x – 1 = tan x – sin x
Write the general solutions of tan2 2x = 1.
If \[2 \sin^2 x = 3\cos x\]. where \[0 \leq x \leq 2\pi\], then find the value of x.
The smallest value of x satisfying the equation
The number of solution in [0, π/2] of the equation \[\cos 3x \tan 5x = \sin 7x\] is
General solution of \[\tan 5 x = \cot 2 x\] is
Solve the following equations:
cos 2θ = `(sqrt(5) + 1)/4`
Choose the correct alternative:
If f(θ) = |sin θ| + |cos θ| , θ ∈ R, then f(θ) is in the interval