हिंदी

The Number of Solution in [0, π/2] of the Equation Cos 3 X Tan 5 X = Sin 7 X is - Mathematics

Advertisements
Advertisements

प्रश्न

The number of solution in [0, π/2] of the equation \[\cos 3x \tan 5x = \sin 7x\] is 

विकल्प

  • 5

  • 7

  • 6

  • none of these

MCQ
योग

उत्तर

6
Given:
\[\cos3x \tan5x = \sin7x\]
\[ \Rightarrow \cos (5x - 2x) \tan5x = \sin (5x + 2x)\]
\[ \Rightarrow \tan5x = \frac{\sin (5x + 2x)}{\cos (5x - 2x)}\]
\[ \Rightarrow \tan5x = \frac{\sin5x \cos2x + \cos5x \sin2x}{\cos5x \cos2x + \sin5x \sin2x}\]
\[ \Rightarrow \frac{\sin5x}{\cos5x} = \frac{\sin5x \cos2x + \cos5x \sin2x}{\cos5x cos2x + \sin5x \sin2x}\]
\[ \Rightarrow \sin5x \cos5x \cos2x + \sin^2 5x \sin2x = \sin5x \cos5x \cos2x + \cos^2 5x \sin2x\]
\[ \Rightarrow \sin^2 5x \sin2x = \cos^2 5x \sin2x\]
\[ \Rightarrow ( \sin^2 5x - \cos^2 5x) \sin2x = 0\]
\[ \Rightarrow (\sin5x - \cos5x) (\sin5x + \cos5x) \sin2x = 0\]
\[\Rightarrow \sin 5 x - \cos 5x = 0 , \sin 5x + \cos 5x = 0\] or \[\sin 2x = 0\] 

\[\Rightarrow \frac{\sin 5x}{\cos 5x} = 1, \frac{\sin 5x}{\cos 5x} = - 1\]
\[\sin 2x = 0\]
Now, 
\[\tan5x = 1 \]
\[ \Rightarrow \tan5x = \tan\frac{\pi}{4}\]
\[ \Rightarrow 5x = n\pi + \frac{\pi}{4}, n \in Z\]
\[ \Rightarrow x = \frac{n\pi}{5} + \frac{\pi}{20}, n \in Z\]

\[\text{ For }n = 0, 1 \text{ and }2,\text{ the values of x are }\frac{\pi}{20}, \frac{\pi}{4}\text{ and }\frac{9\pi}{20}, \text{ respectively} .\]
Or,
\[\tan5x = 1 \]
\[ \Rightarrow \tan5x = \tan \frac{3\pi}{4}\]
\[ \Rightarrow 5x = n\pi + \frac{3\pi}{4}, n \in Z\]
\[ \Rightarrow x = \frac{n\pi}{5} + \frac{3\pi}{20}, n \in Z\]
\[\text{ For }n = 0\text{ and }1,\text{ the values of x are }\frac{3\pi}{20}\text{ and }\frac{7\pi}{20},\text{ respectively .}\]
And,
\[\sin2x = 0 \]
\[ \Rightarrow \sin2x = \sin 0 \]
\[ \Rightarrow 2x = n\pi , n \in Z\]
\[ \Rightarrow x = \frac{n\pi}{2}, n \in Z\]
For n = 0, the value of x is 0 . 
\[\text{ Also, for the odd multiple of }\frac{\pi}{2}, \tan x\text{ is not defined }.\]
Hence, there are six solutions.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 11: Trigonometric equations - Exercise 11.3 [पृष्ठ २७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 11 Trigonometric equations
Exercise 11.3 | Q 7 | पृष्ठ २७

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the principal and general solutions of the equation  `cot x = -sqrt3`


Find the general solution of cosec x = –2


Find the general solution of the equation  sin x + sin 3x + sin 5x = 0


If \[\sin x + \cos x = m\], then prove that \[\sin^6 x + \cos^6 x = \frac{4 - 3 \left( m^2 - 1 \right)^2}{4}\], where \[m^2 \leq 2\]


If \[a = \sec x - \tan x \text{ and }b = cosec x + \cot x\], then shown that  \[ab + a - b + 1 = 0\]


Prove that:

\[3\sin\frac{\pi}{6}\sec\frac{\pi}{3} - 4\sin\frac{5\pi}{6}\cot\frac{\pi}{4} = 1\]

 


Prove that:
\[\frac{\cos (2\pi + x) cosec (2\pi + x) \tan (\pi/2 + x)}{\sec(\pi/2 + x)\cos x \cot(\pi + x)} = 1\]

 


Prove that:

\[\tan\frac{5\pi}{4}\cot\frac{9\pi}{4} + \tan\frac{17\pi}{4}\cot\frac{15\pi}{4} = 0\]

 


If tan x = \[x - \frac{1}{4x}\], then sec x − tan x is equal to


If \[\frac{3\pi}{4} < \alpha < \pi, \text{ then }\sqrt{2\cot \alpha + \frac{1}{\sin^2 \alpha}}\] is equal to


sin2 π/18 + sin2 π/9 + sin2 7π/18 + sin2 4π/9 =


If \[f\left( x \right) = \cos^2 x + \sec^2 x\], then


The value of \[\cos1^\circ \cos2^\circ \cos3^\circ . . . \cos179^\circ\] is

 

Which of the following is correct?


Find the general solution of the following equation:

\[\cos x = - \frac{\sqrt{3}}{2}\]

Find the general solution of the following equation:

\[\tan 3x = \cot x\]

Find the general solution of the following equation:

\[\sin x = \tan x\]

Solve the following equation:

\[\tan^2 x + \left( 1 - \sqrt{3} \right) \tan x - \sqrt{3} = 0\]

Solve the following equation:

\[\sin 3x - \sin x = 4 \cos^2 x - 2\]

Solve the following equation:
\[\cot x + \tan x = 2\]

 


Write the number of points of intersection of the curves

\[2y = 1\] and \[y = \cos x, 0 \leq x \leq 2\pi\].
 

Write the number of points of intersection of the curves

\[2y = - 1 \text{ and }y = cosec x\]

If \[2 \sin^2 x = 3\cos x\]. where \[0 \leq x \leq 2\pi\], then find the value of x.


If \[4 \sin^2 x = 1\], then the values of x are

 


If \[\cot x - \tan x = \sec x\], then, x is equal to

 


If \[e^{\sin x} - e^{- \sin x} - 4 = 0\], then x =


Solve the following equations:
cos θ + cos 3θ = 2 cos 2θ


Solve the following equations:
sin θ + sin 3θ + sin 5θ = 0


Solve the following equations:
`sin theta + sqrt(3) cos theta` = 1


Solve the following equations:
`tan theta + tan (theta + pi/3) + tan (theta + (2pi)/3) = sqrt(3)`


Solve the following equations:
2cos 2x – 7 cos x + 3 = 0


Choose the correct alternative:
If cos pθ + cos qθ = 0 and if p ≠ q, then θ is equal to (n is any integer)


Solve the equation sin θ + sin 3θ + sin 5θ = 0


Solve 2 tan2x + sec2x = 2 for 0 ≤ x ≤ 2π.


If sin θ and cos θ are the roots of the equation ax2 – bx + c = 0, then a, b and c satisfy the relation ______.


If a cosθ + b sinθ = m and a sinθ - b cosθ = n, then show that a2 + b2 = m2 + n2 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×