Advertisements
Advertisements
प्रश्न
The number of solution in [0, π/2] of the equation \[\cos 3x \tan 5x = \sin 7x\] is
पर्याय
5
7
6
none of these
उत्तर
6
Given:
\[\cos3x \tan5x = \sin7x\]
\[ \Rightarrow \cos (5x - 2x) \tan5x = \sin (5x + 2x)\]
\[ \Rightarrow \tan5x = \frac{\sin (5x + 2x)}{\cos (5x - 2x)}\]
\[ \Rightarrow \tan5x = \frac{\sin5x \cos2x + \cos5x \sin2x}{\cos5x \cos2x + \sin5x \sin2x}\]
\[ \Rightarrow \frac{\sin5x}{\cos5x} = \frac{\sin5x \cos2x + \cos5x \sin2x}{\cos5x cos2x + \sin5x \sin2x}\]
\[ \Rightarrow \sin5x \cos5x \cos2x + \sin^2 5x \sin2x = \sin5x \cos5x \cos2x + \cos^2 5x \sin2x\]
\[ \Rightarrow \sin^2 5x \sin2x = \cos^2 5x \sin2x\]
\[ \Rightarrow ( \sin^2 5x - \cos^2 5x) \sin2x = 0\]
\[ \Rightarrow (\sin5x - \cos5x) (\sin5x + \cos5x) \sin2x = 0\]
\[\Rightarrow \sin 5 x - \cos 5x = 0 , \sin 5x + \cos 5x = 0\] or \[\sin 2x = 0\]
\[\tan5x = 1 \]
\[ \Rightarrow \tan5x = \tan\frac{\pi}{4}\]
\[ \Rightarrow 5x = n\pi + \frac{\pi}{4}, n \in Z\]
\[ \Rightarrow x = \frac{n\pi}{5} + \frac{\pi}{20}, n \in Z\]
\[\text{ For }n = 0, 1 \text{ and }2,\text{ the values of x are }\frac{\pi}{20}, \frac{\pi}{4}\text{ and }\frac{9\pi}{20}, \text{ respectively} .\]
Or,
\[\tan5x = 1 \]
\[ \Rightarrow \tan5x = \tan \frac{3\pi}{4}\]
\[ \Rightarrow 5x = n\pi + \frac{3\pi}{4}, n \in Z\]
\[ \Rightarrow x = \frac{n\pi}{5} + \frac{3\pi}{20}, n \in Z\]
\[\text{ For }n = 0\text{ and }1,\text{ the values of x are }\frac{3\pi}{20}\text{ and }\frac{7\pi}{20},\text{ respectively .}\]
And,
\[\sin2x = 0 \]
\[ \Rightarrow \sin2x = \sin 0 \]
\[ \Rightarrow 2x = n\pi , n \in Z\]
\[ \Rightarrow x = \frac{n\pi}{2}, n \in Z\]
For n = 0, the value of x is 0 .
\[\text{ Also, for the odd multiple of }\frac{\pi}{2}, \tan x\text{ is not defined }.\]
Hence, there are six solutions.
APPEARS IN
संबंधित प्रश्न
Find the principal and general solutions of the equation `tan x = sqrt3`
Find the general solution of the equation cos 4 x = cos 2 x
Prove that
Prove that
Prove that:
\[\sin^2 \frac{\pi}{18} + \sin^2 \frac{\pi}{9} + \sin^2 \frac{7\pi}{18} + \sin^2 \frac{4\pi}{9} = 2\]
Prove that:
If x is an acute angle and \[\tan x = \frac{1}{\sqrt{7}}\], then the value of \[\frac{{cosec}^2 x - \sec^2 x}{{cosec}^2 x + \sec^2 x}\] is
The value of sin25° + sin210° + sin215° + ... + sin285° + sin290° is
If \[cosec x + \cot x = \frac{11}{2}\], then tan x =
If sec x + tan x = k, cos x =
The value of \[\tan1^\circ \tan2^\circ \tan3^\circ . . . \tan89^\circ\] is
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Solve the following equation:
\[\sin^2 x - \cos x = \frac{1}{4}\]
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
cosx + sin x = cos 2x + sin 2x
Solve the following equation:
sin x tan x – 1 = tan x – sin x
Write the number of solutions of the equation tan x + sec x = 2 cos x in the interval [0, 2π].
Write the general solutions of tan2 2x = 1.
If \[2 \sin^2 x = 3\cos x\]. where \[0 \leq x \leq 2\pi\], then find the value of x.
The general solution of the equation \[7 \cos^2 x + 3 \sin^2 x = 4\] is
In (0, π), the number of solutions of the equation \[\tan x + \tan 2x + \tan 3x = \tan x \tan 2x \tan 3x\] is
If \[e^{\sin x} - e^{- \sin x} - 4 = 0\], then x =
If \[\sqrt{3} \cos x + \sin x = \sqrt{2}\] , then general value of x is
If \[\cos x = - \frac{1}{2}\] and 0 < x < 2\pi, then the solutions are
Solve the following equations:
2 cos2θ + 3 sin θ – 3 = θ
Solve the following equations:
sin 2θ – cos 2θ – sin θ + cos θ = θ
Solve the following equations:
`tan theta + tan (theta + pi/3) + tan (theta + (2pi)/3) = sqrt(3)`
Choose the correct alternative:
If tan α and tan β are the roots of x2 + ax + b = 0 then `(sin(alpha + beta))/(sin alpha sin beta)` is equal to
Choose the correct alternative:
If f(θ) = |sin θ| + |cos θ| , θ ∈ R, then f(θ) is in the interval