मराठी
तामिळनाडू बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान इयत्ता ११

Solve the following equations:tanθ+tan(θ+π3)+tan(θ+2π3)=3 - Mathematics

Advertisements
Advertisements

प्रश्न

Solve the following equations:
`tan theta + tan (theta + pi/3) + tan (theta + (2pi)/3) = sqrt(3)`

बेरीज

उत्तर

Now `tan(theta + pi/3) = (tantheta + sqrt(3))/(1 - sqrt(3) tan theta)` and `tan(theta + (2pi)/3)`

= `(tantheta - sqrt(3))/(1 + sqrt(3) tan theta)`

So, `tan(theta + pi/3) + tan(theta + (2pi)/3)`

= `(tantheta + sqrt(3))/(1 - sqrt(3) tantheta) + (tan theta - sqrt(3))/(1 + sqrt(3) tantheta)`

= `((tan theta + sqrt(3))(1 + sqrt(3) tan theta) + (tan theta - sqrt(3))(1 - sqrt(3) tan theta))/(1 - 3tan^2theta)`

= `(tan theta + sqrt(3) + sqrt(3)tan^2theta + 3tantheta + tantheta - sqrt(3)tan^2theta - sqrt(3) + 3tantheta)/(1 - 3tan^2theta)`

= `(8tantheta)/(1 - 3tan^2theta)`

Given, `tantheta + tan(theta + pi/3) + tan(theta + (2pi)/3) = sqrt(3)`

⇒ `tan theta + (8tantheta)/(1 - 3tan^2theta) = sqrt(3)`

⇒ `(tantheta - 3tan^3theta + 8tantheta)/(1 - 3tan^2theta) = sqrt(3)`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Trigonometry - Exercise 3.8 [पृष्ठ १३३]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 11 TN Board
पाठ 3 Trigonometry
Exercise 3.8 | Q 3. (ix) | पृष्ठ १३३

संबंधित प्रश्‍न

If \[\sin x + \cos x = m\], then prove that \[\sin^6 x + \cos^6 x = \frac{4 - 3 \left( m^2 - 1 \right)^2}{4}\], where \[m^2 \leq 2\]


If \[T_n = \sin^n x + \cos^n x\], prove that  \[2 T_6 - 3 T_4 + 1 = 0\]


Prove that

\[\left\{ 1 + \cot x - \sec\left( \frac{\pi}{2} + x \right) \right\}\left\{ 1 + \cot x + \sec\left( \frac{\pi}{2} + x \right) \right\} = 2\cot x\]

 


In a ∆ABC, prove that:
cos (A + B) + cos C = 0


If sec \[x = x + \frac{1}{4x}\], then sec x + tan x = 

 

If \[cosec x + \cot x = \frac{11}{2}\], then tan x =

 


Find the general solution of the following equation:

\[\cos x = - \frac{\sqrt{3}}{2}\]

Find the general solution of the following equation:

\[\cos 3x = \frac{1}{2}\]

Solve the following equation:

\[\cos x + \cos 3x - \cos 2x = 0\]

Solve the following equation:

\[\sin x + \sin 2x + \sin 3x + \sin 4x = 0\]

Solve the following equation:

\[\sin 3x - \sin x = 4 \cos^2 x - 2\]

Solve the following equation:

\[\sqrt{3} \cos x + \sin x = 1\]


If secx cos5x + 1 = 0, where \[0 < x \leq \frac{\pi}{2}\], find the value of x.


Write the solution set of the equation 

\[\left( 2 \cos x + 1 \right) \left( 4 \cos x + 5 \right) = 0\] in the interval [0, 2π].

In (0, π), the number of solutions of the equation ​ \[\tan x + \tan 2x + \tan 3x = \tan x \tan 2x \tan 3x\] is 


The equation \[3 \cos x + 4 \sin x = 6\] has .... solution.


The solution of the equation \[\cos^2 x + \sin x + 1 = 0\] lies in the interval


Solve the following equations:
2 cos2θ + 3 sin θ – 3 = θ


Find the general solution of the equation sinx – 3sin2x + sin3x = cosx – 3cos2x + cos3x


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×