Advertisements
Advertisements
प्रश्न
Solve the following equations:
`tan theta + tan (theta + pi/3) + tan (theta + (2pi)/3) = sqrt(3)`
उत्तर
Now `tan(theta + pi/3) = (tantheta + sqrt(3))/(1 - sqrt(3) tan theta)` and `tan(theta + (2pi)/3)`
= `(tantheta - sqrt(3))/(1 + sqrt(3) tan theta)`
So, `tan(theta + pi/3) + tan(theta + (2pi)/3)`
= `(tantheta + sqrt(3))/(1 - sqrt(3) tantheta) + (tan theta - sqrt(3))/(1 + sqrt(3) tantheta)`
= `((tan theta + sqrt(3))(1 + sqrt(3) tan theta) + (tan theta - sqrt(3))(1 - sqrt(3) tan theta))/(1 - 3tan^2theta)`
= `(tan theta + sqrt(3) + sqrt(3)tan^2theta + 3tantheta + tantheta - sqrt(3)tan^2theta - sqrt(3) + 3tantheta)/(1 - 3tan^2theta)`
= `(8tantheta)/(1 - 3tan^2theta)`
Given, `tantheta + tan(theta + pi/3) + tan(theta + (2pi)/3) = sqrt(3)`
⇒ `tan theta + (8tantheta)/(1 - 3tan^2theta) = sqrt(3)`
⇒ `(tantheta - 3tan^3theta + 8tantheta)/(1 - 3tan^2theta) = sqrt(3)`
APPEARS IN
संबंधित प्रश्न
If \[\sin x + \cos x = m\], then prove that \[\sin^6 x + \cos^6 x = \frac{4 - 3 \left( m^2 - 1 \right)^2}{4}\], where \[m^2 \leq 2\]
If \[T_n = \sin^n x + \cos^n x\], prove that \[2 T_6 - 3 T_4 + 1 = 0\]
Prove that
In a ∆ABC, prove that:
cos (A + B) + cos C = 0
If sec \[x = x + \frac{1}{4x}\], then sec x + tan x =
If \[cosec x + \cot x = \frac{11}{2}\], then tan x =
Find the general solution of the following equation:
Find the general solution of the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
\[\sqrt{3} \cos x + \sin x = 1\]
If secx cos5x + 1 = 0, where \[0 < x \leq \frac{\pi}{2}\], find the value of x.
Write the solution set of the equation
In (0, π), the number of solutions of the equation \[\tan x + \tan 2x + \tan 3x = \tan x \tan 2x \tan 3x\] is
The equation \[3 \cos x + 4 \sin x = 6\] has .... solution.
The solution of the equation \[\cos^2 x + \sin x + 1 = 0\] lies in the interval
Solve the following equations:
2 cos2θ + 3 sin θ – 3 = θ
Find the general solution of the equation sinx – 3sin2x + sin3x = cosx – 3cos2x + cos3x