Advertisements
Advertisements
प्रश्न
If \[\sin x + \cos x = m\], then prove that \[\sin^6 x + \cos^6 x = \frac{4 - 3 \left( m^2 - 1 \right)^2}{4}\], where \[m^2 \leq 2\]
उत्तर
\[\sin x + \cos x = m\] (Given)
\[\text{To prove:} \sin^6 x + \cos^6 x = \frac{4 - 3 ( m^2 - 1 )^2}{4},\text{ where }m^2 \leq 2\]
Proof:
LHS:
\[ \sin^6 x + \cos^6 x \]
\[ = \left( \sin^2 x \right)^3 + \left( \cos^2 x \right)^3 \]
\[ = \left( \sin^2 x + \cos^2 x \right)^3 - 3 \sin^2 x \cos^2 x\left( \sin^2 x + \cos^2 x \right)\]
\[ = 1 - 3 \sin^2 x \cos^2 x\]
RHS:
\[ \frac{4 - 3 ( m^2 - 1 )^2}{4} \]
\[ = \frac{4 - 3 \left[ \left( \sin x + \cos x \right)^2 - 1 \right]^2}{4}\]
\[ = \frac{4 - 3 \left[ \sin^2 x + \cos^2 x + 2\sin x \cos x - 1 \right]^2}{4}\]
\[ = \frac{4 - 3 \left[ \sin^2 x - \left( 1 - \cos^2 x \right) + 2 \sin x \cos x \right]^2}{4}\]
\[ = \frac{4 - 3 \times 4 \sin^2 x \cos^2 x}{4}\]
\[ = 1 - 3 \sin^2 x \cos^2 x\]
LHS = RHS
Hence proved
APPEARS IN
संबंधित प्रश्न
If \[\sin x = \frac{a^2 - b^2}{a^2 + b^2}\], then the values of tan x, sec x and cosec x
If \[\cot x \left( 1 + \sin x \right) = 4 m \text{ and }\cot x \left( 1 - \sin x \right) = 4 n,\] \[\left( m^2 + n^2 \right)^2 = mn\]
If \[T_n = \sin^n x + \cos^n x\], prove that \[2 T_6 - 3 T_4 + 1 = 0\]
If \[T_n = \sin^n x + \cos^n x\], prove that \[6 T_{10} - 15 T_8 + 10 T_6 - 1 = 0\]
Prove that: cos 24° + cos 55° + cos 125° + cos 204° + cos 300° = \[\frac{1}{2}\]
Prove that: \[\tan\frac{11\pi}{3} - 2\sin\frac{4\pi}{6} - \frac{3}{4} {cosec}^2 \frac{\pi}{4} + 4 \cos^2 \frac{17\pi}{6} = \frac{3 - 4\sqrt{3}}{2}\]
Prove that
In a ∆ABC, prove that:
In a ∆A, B, C, D be the angles of a cyclic quadrilateral, taken in order, prove that cos(180° − A) + cos (180° + B) + cos (180° + C) − sin (90° + D) = 0
Find x from the following equations:
\[x \cot\left( \frac{\pi}{2} + \theta \right) + \tan\left( \frac{\pi}{2} + \theta \right)\sin \theta + cosec\left( \frac{\pi}{2} + \theta \right) = 0\]
Prove that:
\[\sin\frac{13\pi}{3}\sin\frac{8\pi}{3} + \cos\frac{2\pi}{3}\sin\frac{5\pi}{6} = \frac{1}{2}\]
If \[\frac{\pi}{2} < x < \frac{3\pi}{2},\text{ then }\sqrt{\frac{1 - \sin x}{1 + \sin x}}\] is equal to
If tan x + sec x = \[\sqrt{3}\], 0 < x < π, then x is equal to
If \[cosec x - \cot x = \frac{1}{2}, 0 < x < \frac{\pi}{2},\]
If \[cosec x + \cot x = \frac{11}{2}\], then tan x =
If A lies in second quadrant 3tan A + 4 = 0, then the value of 2cot A − 5cosA + sin A is equal to
If tan θ + sec θ =ex, then cos θ equals
If \[f\left( x \right) = \cos^2 x + \sec^2 x\], then
Find the general solution of the following equation:
Find the general solution of the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
\[\sin x + \cos x = \sqrt{2}\]
Solve the following equation:
4sinx cosx + 2 sin x + 2 cosx + 1 = 0
Solve the following equation:
cosx + sin x = cos 2x + sin 2x
Solve the following equation:
sin x tan x – 1 = tan x – sin x
Solve the following equation:
3sin2x – 5 sin x cos x + 8 cos2 x = 2
The general value of x satisfying the equation
\[\sqrt{3} \sin x + \cos x = \sqrt{3}\]
If \[\cot x - \tan x = \sec x\], then, x is equal to
Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°
cos 2x = 1 − 3 sin x
Solve the following equations:
2 cos2θ + 3 sin θ – 3 = θ
Solve the following equations:
sin θ + sin 3θ + sin 5θ = 0
Solve the following equations:
cos 2θ = `(sqrt(5) + 1)/4`
Choose the correct alternative:
If cos pθ + cos qθ = 0 and if p ≠ q, then θ is equal to (n is any integer)
In a triangle ABC with ∠C = 90° the equation whose roots are tan A and tan B is ______.