मराठी

If Cot X ( 1 + Sin X ) = 4 M and Cot X ( 1 − Sin X ) = 4 N , ( M 2 + N 2 ) 2 = M N - Mathematics

Advertisements
Advertisements

प्रश्न

If \[\cot x \left( 1 + \sin x \right) = 4 m \text{ and }\cot x \left( 1 - \sin x \right) = 4 n,\] \[\left( m^2 + n^2 \right)^2 = mn\]

उत्तर

Given:

\[4m = cotx\left( 1 + \sin x \right) and 4n = cot x\left( 1 - \sin x \right)\]

Multiplying both the equations:

\[ \Rightarrow 16mn = co t^2 x\left( 1 - \sin^2 x \right)\]

\[ \Rightarrow 16mn = co t^2 x . \cos^2 x\]

\[ \Rightarrow mn = \frac{\cos^4 x}{16 \sin^2 x} \left( 1 \right)\]

Squaring the given equation: 

\[16 m^2 = co t^2 x \left( 1 + \sin x \right)^2 \text{ and }16 n^2 = co t^2 x \left( 1 - \sin x \right)^2 \]

\[ \Rightarrow 16 m^2 - 16 n^2 = co t^2 x\left( 4\sin x \right)\]

\[ \Rightarrow m^2 - n^2 = \frac{co t^2 x . \sin x}{4}\]

Squaring both sides, 

\[ \left( m^2 - n^2 \right)^2 = \frac{co t^4 x . \sin^2 x}{16}\]

\[ \Rightarrow \left( m^2 - n^2 \right)^2 = \frac{\cos^4 x}{16 \sin^2 x} (2)\]

From (1) and (2): 

\[ \left( m^2 - n^2 \right)^2 = mn\]

Hence proved.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 5: Trigonometric Functions - Exercise 5.1 [पृष्ठ १९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 5 Trigonometric Functions
Exercise 5.1 | Q 22 | पृष्ठ १९

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the general solution of cosec x = –2


Find the general solution of the equation sin 2x + cos x = 0


If \[\tan x = \frac{a}{b},\] show that

\[\frac{a \sin x - b \cos x}{a \sin x + b \cos x} = \frac{a^2 - b^2}{a^2 + b^2}\]

If \[T_n = \sin^n x + \cos^n x\], prove that \[\frac{T_3 - T_5}{T_1} = \frac{T_5 - T_7}{T_3}\]

 


Prove that: cos 24° + cos 55° + cos 125° + cos 204° + cos 300° = \[\frac{1}{2}\]


In a ∆ABC, prove that:

\[\tan\frac{A + B}{2} = \cot\frac{C}{2}\]

The value of sin25° + sin210° + sin215° + ... + sin285° + sin290° is


sin2 π/18 + sin2 π/9 + sin2 7π/18 + sin2 4π/9 =


If sec x + tan x = k, cos x =


If \[f\left( x \right) = \cos^2 x + \sec^2 x\], then


Which of the following is incorrect?


The value of \[\cos1^\circ \cos2^\circ \cos3^\circ . . . \cos179^\circ\] is

 

Find the general solution of the following equation:

\[\sin 9x = \sin x\]

Find the general solution of the following equation:

\[\tan 2x \tan x = 1\]

Find the general solution of the following equation:

\[\tan px = \cot qx\]

 


Solve the following equation:

\[\sin x + \sin 2x + \sin 3x + \sin 4x = 0\]

Solve the following equation:

\[\sin x + \cos x = 1\]

Solve the following equation:
\[2 \sin^2 x = 3\cos x, 0 \leq x \leq 2\pi\]


Solve the following equation:
\[\sin x - 3\sin2x + \sin3x = \cos x - 3\cos2x + \cos3x\]


If \[3\tan\left( x - 15^\circ \right) = \tan\left( x + 15^\circ \right)\] \[0 < x < 90^\circ\], find θ.


The general solution of the equation \[7 \cos^2 x + 3 \sin^2 x = 4\] is


The number of solution in [0, π/2] of the equation \[\cos 3x \tan 5x = \sin 7x\] is 


A value of x satisfying \[\cos x + \sqrt{3} \sin x = 2\] is

 

If \[e^{\sin x} - e^{- \sin x} - 4 = 0\], then x =


The solution of the equation \[\cos^2 x + \sin x + 1 = 0\] lies in the interval


Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°

2 sin2x + 1 = 3 sin x


Solve the following equations:
sin θ + cos θ = `sqrt(2)`


Solve the following equations:
2cos 2x – 7 cos x + 3 = 0


Choose the correct alternative:
If tan 40° = λ, then `(tan 140^circ - tan 130^circ)/(1 + tan 140^circ *  tan 130^circ)` =


Choose the correct alternative:
`(cos 6x + 6 cos 4x + 15cos x + 10)/(cos 5x + 5cs 3x + 10 cos x)` is equal to


Solve the equation sin θ + sin 3θ + sin 5θ = 0


Solve 2 tan2x + sec2x = 2 for 0 ≤ x ≤ 2π.


If 2sin2θ = 3cosθ, where 0 ≤ θ ≤ 2π, then find the value of θ.


Number of solutions of the equation tan x + sec x = 2 cosx lying in the interval [0, 2π] is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×