Advertisements
Advertisements
प्रश्न
A value of x satisfying \[\cos x + \sqrt{3} \sin x = 2\] is
पर्याय
`(5pi)/3`
\[\frac{4\pi}{3}\]
`(2pi)/3`
\[\frac{\pi}{3}\]
उत्तर
Given equation:
Thus, the equation is of the form
Let: \[a = r \cos \alpha\] and \[b = r \sin \alpha\]
\[\tan \alpha = \frac{b}{a} \Rightarrow \tan \alpha = \frac{\sqrt{3}}{1} \Rightarrow \tan \alpha = \tan \frac{\pi}{3} \Rightarrow \alpha = \frac{\pi}{3}\]
On putting \[a = 1 = r \cos \alpha\] and \[b = \sqrt{3} = r \sin \alpha\] in equation (i), we get:
\[r \cos \alpha \cos x + r \sin \alpha \sin x = 2\]
\[ \Rightarrow r \cos\left( x - \alpha \right) = 2\]
\[ \Rightarrow r \cos\left( x - \frac{\pi}{3} \right) = 2\]
\[ \Rightarrow 2 \cos \left( x - \frac{\pi}{3} \right) = 2\]
\[ \Rightarrow \cos \left( x - \frac{\pi}{3} \right) = 1\]
\[ \Rightarrow \cos \left( x - \frac{\pi}{3} \right) = \cos 0\]
\[ \Rightarrow x - \frac{\pi}{3} = 0\]
\[ \Rightarrow x = \frac{\pi}{3}\]
APPEARS IN
संबंधित प्रश्न
If \[x = \frac{2 \sin x}{1 + \cos x + \sin x}\], then prove that
Prove that: \[\tan\frac{11\pi}{3} - 2\sin\frac{4\pi}{6} - \frac{3}{4} {cosec}^2 \frac{\pi}{4} + 4 \cos^2 \frac{17\pi}{6} = \frac{3 - 4\sqrt{3}}{2}\]
Prove that:
\[\sin^2 \frac{\pi}{18} + \sin^2 \frac{\pi}{9} + \sin^2 \frac{7\pi}{18} + \sin^2 \frac{4\pi}{9} = 2\]
In a ∆ABC, prove that:
If x = r sin θ cos ϕ, y = r sin θ sin ϕ and z = r cos θ, then x2 + y2 + z2 is independent of
If tan x + sec x = \[\sqrt{3}\], 0 < x < π, then x is equal to
If tan \[x = - \frac{1}{\sqrt{5}}\] and θ lies in the IV quadrant, then the value of cos x is
sin2 π/18 + sin2 π/9 + sin2 7π/18 + sin2 4π/9 =
If sec x + tan x = k, cos x =
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
\[\sec x\cos5x + 1 = 0, 0 < x < \frac{\pi}{2}\]
Solve the following equation:
3 – 2 cos x – 4 sin x – cos 2x + sin 2x = 0
Solve the following equation:
3sin2x – 5 sin x cos x + 8 cos2 x = 2
Solve the following equation:
\[2^{\sin^2 x} + 2^{\cos^2 x} = 2\sqrt{2}\]
Write the values of x in [0, π] for which \[\sin 2x, \frac{1}{2}\]
and cos 2x are in A.P.
If \[\tan px - \tan qx = 0\], then the values of θ form a series in
The number of solution in [0, π/2] of the equation \[\cos 3x \tan 5x = \sin 7x\] is
If \[4 \sin^2 x = 1\], then the values of x are
The number of values of x in [0, 2π] that satisfy the equation \[\sin^2 x - \cos x = \frac{1}{4}\]
If \[\cos x = - \frac{1}{2}\] and 0 < x < 2\pi, then the solutions are
Find the principal solution and general solution of the following:
sin θ = `-1/sqrt(2)`
Find the principal solution and general solution of the following:
cot θ = `sqrt(3)`
Find the principal solution and general solution of the following:
tan θ = `- 1/sqrt(3)`
Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°
2 sin2x + 1 = 3 sin x
Solve the following equations:
sin θ + sin 3θ + sin 5θ = 0
Choose the correct alternative:
If f(θ) = |sin θ| + |cos θ| , θ ∈ R, then f(θ) is in the interval
Solve `sqrt(3)` cos θ + sin θ = `sqrt(2)`
If a cosθ + b sinθ = m and a sinθ - b cosθ = n, then show that a2 + b2 = m2 + n2
The minimum value of 3cosx + 4sinx + 8 is ______.