मराठी

A Value of X Satisfying Cos X + √ 3 Sin X = 2 is - Mathematics

Advertisements
Advertisements

प्रश्न

A value of x satisfying \[\cos x + \sqrt{3} \sin x = 2\] is

 

पर्याय

  • `(5pi)/3`

  • \[\frac{4\pi}{3}\]

  • `(2pi)/3`

  • \[\frac{\pi}{3}\]

MCQ
बेरीज

उत्तर

\[\frac{\pi}{3}\]
Given equation: 
\[\cos x + \sqrt{3} \sin x = 2\]    ...(i)
Thus, the equation is of the form 
\[a \cos x + b \sin x = c\], where 
\[a = 1, b = \sqrt{3}\] and c = 3.
Let: \[a = r \cos \alpha\] and \[b = r \sin \alpha\]
\[1 = r \cos \alpha\] and `sqrt3=r sinalpha`
\[\Rightarrow r = \sqrt{a^2 + b^2} = \sqrt{(\sqrt{3} )^2 + 1^2} = 2\] and 
\[\tan \alpha = \frac{b}{a} \Rightarrow \tan \alpha = \frac{\sqrt{3}}{1} \Rightarrow \tan \alpha = \tan \frac{\pi}{3} \Rightarrow \alpha = \frac{\pi}{3}\]
On putting \[a = 1 = r \cos \alpha\] and \[b = \sqrt{3} = r \sin \alpha\] in equation (i), we get:
\[r \cos \alpha \cos x + r \sin \alpha \sin x = 2\]
\[ \Rightarrow r \cos\left( x - \alpha \right) = 2\]
\[ \Rightarrow r \cos\left( x - \frac{\pi}{3} \right) = 2\]
\[ \Rightarrow 2 \cos \left( x - \frac{\pi}{3} \right) = 2\]
\[ \Rightarrow \cos \left( x - \frac{\pi}{3} \right) = 1\]
\[ \Rightarrow \cos \left( x - \frac{\pi}{3} \right) = \cos 0\]
\[ \Rightarrow x - \frac{\pi}{3} = 0\]
\[ \Rightarrow x = \frac{\pi}{3}\]
shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 11: Trigonometric equations - Exercise 11.3 [पृष्ठ २७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 11 Trigonometric equations
Exercise 11.3 | Q 12 | पृष्ठ २७

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

If \[x = \frac{2 \sin x}{1 + \cos x + \sin x}\], then prove that

\[\frac{1 - \cos x + \sin x}{1 + \sin x}\] is also equal to a.

Prove that: \[\tan\frac{11\pi}{3} - 2\sin\frac{4\pi}{6} - \frac{3}{4} {cosec}^2 \frac{\pi}{4} + 4 \cos^2 \frac{17\pi}{6} = \frac{3 - 4\sqrt{3}}{2}\]

 


Prove that:
\[\sin^2 \frac{\pi}{18} + \sin^2 \frac{\pi}{9} + \sin^2 \frac{7\pi}{18} + \sin^2 \frac{4\pi}{9} = 2\]

 

In a ∆ABC, prove that:

\[\cos\left( \frac{A + B}{2} \right) = \sin\frac{C}{2}\]

 


\[\sqrt{\frac{1 + \cos x}{1 - \cos x}}\] is equal to

 


If x = r sin θ cos ϕ, y = r sin θ sin ϕ and r cos θ, then x2 + y2 + z2 is independent of


If tan x + sec x = \[\sqrt{3}\], 0 < x < π, then x is equal to


If tan \[x = - \frac{1}{\sqrt{5}}\] and θ lies in the IV quadrant, then the value of cos x is

 

sin2 π/18 + sin2 π/9 + sin2 7π/18 + sin2 4π/9 =


If sec x + tan x = k, cos x =


Find the general solution of the following equation:

\[\sin x = \frac{1}{2}\]

Find the general solution of the following equation:

\[\tan x = - \frac{1}{\sqrt{3}}\]

Find the general solution of the following equation:

\[\tan 3x = \cot x\]

Solve the following equation:

\[4 \sin^2 x - 8 \cos x + 1 = 0\]

Solve the following equation:

\[\tan^2 x + \left( 1 - \sqrt{3} \right) \tan x - \sqrt{3} = 0\]

Solve the following equation:

\[\cos x + \cos 3x - \cos 2x = 0\]

Solve the following equation:

\[\tan x + \tan 2x = \tan 3x\]

Solve the following equation:
\[\sec x\cos5x + 1 = 0, 0 < x < \frac{\pi}{2}\]


Solve the following equation:
3 – 2 cos x – 4 sin x – cos 2x + sin 2x = 0


Solve the following equation:
3sin2x – 5 sin x cos x + 8 cos2 x = 2


Solve the following equation:
\[2^{\sin^2 x} + 2^{\cos^2 x} = 2\sqrt{2}\]


Write the values of x in [0, π] for which \[\sin 2x, \frac{1}{2}\]

 and cos 2x are in A.P.


If \[\tan px - \tan qx = 0\], then the values of θ form a series in

 


The number of solution in [0, π/2] of the equation \[\cos 3x \tan 5x = \sin 7x\] is 


If \[4 \sin^2 x = 1\], then the values of x are

 


The number of values of ​x in [0, 2π] that satisfy the equation \[\sin^2 x - \cos x = \frac{1}{4}\]


If \[\cos x = - \frac{1}{2}\] and 0 < x < 2\pi, then the solutions are


Find the principal solution and general solution of the following:
sin θ = `-1/sqrt(2)`


Find the principal solution and general solution of the following:
cot θ = `sqrt(3)`


Find the principal solution and general solution of the following:
tan θ = `- 1/sqrt(3)`


Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°

2 sin2x + 1 = 3 sin x


Solve the following equations:
sin θ + sin 3θ + sin 5θ = 0


Choose the correct alternative:
If f(θ) = |sin θ| + |cos θ| , θ ∈ R, then f(θ) is in the interval


Solve `sqrt(3)` cos θ + sin θ = `sqrt(2)`


If a cosθ + b sinθ = m and a sinθ - b cosθ = n, then show that a2 + b2 = m2 + n2 


The minimum value of 3cosx + 4sinx + 8 is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×