English

A Value of X Satisfying Cos X + √ 3 Sin X = 2 is - Mathematics

Advertisements
Advertisements

Question

A value of x satisfying \[\cos x + \sqrt{3} \sin x = 2\] is

 

Options

  • `(5pi)/3`

  • \[\frac{4\pi}{3}\]

  • `(2pi)/3`

  • \[\frac{\pi}{3}\]

MCQ
Sum

Solution

\[\frac{\pi}{3}\]
Given equation: 
\[\cos x + \sqrt{3} \sin x = 2\]    ...(i)
Thus, the equation is of the form 
\[a \cos x + b \sin x = c\], where 
\[a = 1, b = \sqrt{3}\] and c = 3.
Let: \[a = r \cos \alpha\] and \[b = r \sin \alpha\]
\[1 = r \cos \alpha\] and `sqrt3=r sinalpha`
\[\Rightarrow r = \sqrt{a^2 + b^2} = \sqrt{(\sqrt{3} )^2 + 1^2} = 2\] and 
\[\tan \alpha = \frac{b}{a} \Rightarrow \tan \alpha = \frac{\sqrt{3}}{1} \Rightarrow \tan \alpha = \tan \frac{\pi}{3} \Rightarrow \alpha = \frac{\pi}{3}\]
On putting \[a = 1 = r \cos \alpha\] and \[b = \sqrt{3} = r \sin \alpha\] in equation (i), we get:
\[r \cos \alpha \cos x + r \sin \alpha \sin x = 2\]
\[ \Rightarrow r \cos\left( x - \alpha \right) = 2\]
\[ \Rightarrow r \cos\left( x - \frac{\pi}{3} \right) = 2\]
\[ \Rightarrow 2 \cos \left( x - \frac{\pi}{3} \right) = 2\]
\[ \Rightarrow \cos \left( x - \frac{\pi}{3} \right) = 1\]
\[ \Rightarrow \cos \left( x - \frac{\pi}{3} \right) = \cos 0\]
\[ \Rightarrow x - \frac{\pi}{3} = 0\]
\[ \Rightarrow x = \frac{\pi}{3}\]
shaalaa.com
  Is there an error in this question or solution?
Chapter 11: Trigonometric equations - Exercise 11.3 [Page 27]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 11 Trigonometric equations
Exercise 11.3 | Q 12 | Page 27

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the principal and general solutions of the equation  `cot x = -sqrt3`


Find the general solution of the equation sin 2x + cos x = 0


Find the general solution for each of the following equations sec2 2x = 1– tan 2x


If \[T_n = \sin^n x + \cos^n x\], prove that \[\frac{T_3 - T_5}{T_1} = \frac{T_5 - T_7}{T_3}\]

 


Prove that:  tan 225° cot 405° + tan 765° cot 675° = 0


Prove that

\[\frac{\sin(180^\circ + x) \cos(90^\circ + x) \tan(270^\circ - x) \cot(360^\circ - x)}{\sin(360^\circ - x) \cos(360^\circ + x) cosec( - x) \sin(270^\circ + x)} = 1\]

 


Prove that:
\[\sec\left( \frac{3\pi}{2} - x \right)\sec\left( x - \frac{5\pi}{2} \right) + \tan\left( \frac{5\pi}{2} + x \right)\tan\left( x - \frac{3\pi}{2} \right) = - 1 .\]


In a ∆ABC, prove that:
cos (A + B) + cos C = 0


If tan x = \[x - \frac{1}{4x}\], then sec x − tan x is equal to


If tan \[x = - \frac{1}{\sqrt{5}}\] and θ lies in the IV quadrant, then the value of cos x is

 

If x is an acute angle and \[\tan x = \frac{1}{\sqrt{7}}\], then the value of \[\frac{{cosec}^2 x - \sec^2 x}{{cosec}^2 x + \sec^2 x}\] is


If tan θ + sec θ =ex, then cos θ equals


Which of the following is correct?


Find the general solution of the following equation:

\[\sin x = \frac{1}{2}\]

Find the general solution of the following equation:

\[\sqrt{3} \sec x = 2\]

Find the general solution of the following equation:

\[\sin 9x = \sin x\]

Find the general solution of the following equation:

\[\tan 2x \tan x = 1\]

Find the general solution of the following equation:

\[\tan mx + \cot nx = 0\]

Solve the following equation:

\[2 \cos^2 x - 5 \cos x + 2 = 0\]

Solve the following equation:

\[4 \sin^2 x - 8 \cos x + 1 = 0\]

Solve the following equation:

\[\cos x + \cos 2x + \cos 3x = 0\]

Solve the following equation:

\[\tan x + \tan 2x = \tan 3x\]

Solve the following equation:
\[\cot x + \tan x = 2\]

 


Solve the following equation:
\[5 \cos^2 x + 7 \sin^2 x - 6 = 0\]


Solve the following equation:
\[2^{\sin^2 x} + 2^{\cos^2 x} = 2\sqrt{2}\]


Write the number of solutions of the equation tan x + sec x = 2 cos x in the interval [0, 2π].


Write the number of solutions of the equation
\[4 \sin x - 3 \cos x = 7\]


Write the number of points of intersection of the curves

\[2y = 1\] and \[y = \cos x, 0 \leq x \leq 2\pi\].
 

If \[3\tan\left( x - 15^\circ \right) = \tan\left( x + 15^\circ \right)\] \[0 < x < 90^\circ\], find θ.


The smallest value of x satisfying the equation

\[\sqrt{3} \left( \cot x + \tan x \right) = 4\] is 

If \[\cos x + \sqrt{3} \sin x = 2,\text{ then }x =\]

 


The general value of x satisfying the equation
\[\sqrt{3} \sin x + \cos x = \sqrt{3}\]


The number of values of x in the interval [0, 5 π] satisfying the equation \[3 \sin^2 x - 7 \sin x + 2 = 0\] is


Find the principal solution and general solution of the following:
cot θ = `sqrt(3)`


Find the principal solution and general solution of the following:
tan θ = `- 1/sqrt(3)`


Solve the following equations:
cos θ + cos 3θ = 2 cos 2θ


Solve the following equations:
`tan theta + tan (theta + pi/3) + tan (theta + (2pi)/3) = sqrt(3)`


In a triangle ABC with ∠C = 90° the equation whose roots are tan A and tan B is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×