Advertisements
Advertisements
Question
A value of x satisfying \[\cos x + \sqrt{3} \sin x = 2\] is
Options
`(5pi)/3`
\[\frac{4\pi}{3}\]
`(2pi)/3`
\[\frac{\pi}{3}\]
Solution
Given equation:
Thus, the equation is of the form
Let: \[a = r \cos \alpha\] and \[b = r \sin \alpha\]
\[\tan \alpha = \frac{b}{a} \Rightarrow \tan \alpha = \frac{\sqrt{3}}{1} \Rightarrow \tan \alpha = \tan \frac{\pi}{3} \Rightarrow \alpha = \frac{\pi}{3}\]
On putting \[a = 1 = r \cos \alpha\] and \[b = \sqrt{3} = r \sin \alpha\] in equation (i), we get:
\[r \cos \alpha \cos x + r \sin \alpha \sin x = 2\]
\[ \Rightarrow r \cos\left( x - \alpha \right) = 2\]
\[ \Rightarrow r \cos\left( x - \frac{\pi}{3} \right) = 2\]
\[ \Rightarrow 2 \cos \left( x - \frac{\pi}{3} \right) = 2\]
\[ \Rightarrow \cos \left( x - \frac{\pi}{3} \right) = 1\]
\[ \Rightarrow \cos \left( x - \frac{\pi}{3} \right) = \cos 0\]
\[ \Rightarrow x - \frac{\pi}{3} = 0\]
\[ \Rightarrow x = \frac{\pi}{3}\]
APPEARS IN
RELATED QUESTIONS
Find the principal and general solutions of the equation `cot x = -sqrt3`
Find the general solution of the equation sin 2x + cos x = 0
Find the general solution for each of the following equations sec2 2x = 1– tan 2x
If \[T_n = \sin^n x + \cos^n x\], prove that \[\frac{T_3 - T_5}{T_1} = \frac{T_5 - T_7}{T_3}\]
Prove that: tan 225° cot 405° + tan 765° cot 675° = 0
Prove that
Prove that:
\[\sec\left( \frac{3\pi}{2} - x \right)\sec\left( x - \frac{5\pi}{2} \right) + \tan\left( \frac{5\pi}{2} + x \right)\tan\left( x - \frac{3\pi}{2} \right) = - 1 .\]
In a ∆ABC, prove that:
cos (A + B) + cos C = 0
If tan x = \[x - \frac{1}{4x}\], then sec x − tan x is equal to
If tan \[x = - \frac{1}{\sqrt{5}}\] and θ lies in the IV quadrant, then the value of cos x is
If x is an acute angle and \[\tan x = \frac{1}{\sqrt{7}}\], then the value of \[\frac{{cosec}^2 x - \sec^2 x}{{cosec}^2 x + \sec^2 x}\] is
If tan θ + sec θ =ex, then cos θ equals
Which of the following is correct?
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
\[\cot x + \tan x = 2\]
Solve the following equation:
\[5 \cos^2 x + 7 \sin^2 x - 6 = 0\]
Solve the following equation:
\[2^{\sin^2 x} + 2^{\cos^2 x} = 2\sqrt{2}\]
Write the number of solutions of the equation tan x + sec x = 2 cos x in the interval [0, 2π].
Write the number of solutions of the equation
\[4 \sin x - 3 \cos x = 7\]
Write the number of points of intersection of the curves
If \[3\tan\left( x - 15^\circ \right) = \tan\left( x + 15^\circ \right)\] \[0 < x < 90^\circ\], find θ.
The smallest value of x satisfying the equation
If \[\cos x + \sqrt{3} \sin x = 2,\text{ then }x =\]
The general value of x satisfying the equation
\[\sqrt{3} \sin x + \cos x = \sqrt{3}\]
The number of values of x in the interval [0, 5 π] satisfying the equation \[3 \sin^2 x - 7 \sin x + 2 = 0\] is
Find the principal solution and general solution of the following:
cot θ = `sqrt(3)`
Find the principal solution and general solution of the following:
tan θ = `- 1/sqrt(3)`
Solve the following equations:
cos θ + cos 3θ = 2 cos 2θ
Solve the following equations:
`tan theta + tan (theta + pi/3) + tan (theta + (2pi)/3) = sqrt(3)`
In a triangle ABC with ∠C = 90° the equation whose roots are tan A and tan B is ______.