English

If 3 Tan ( X − 15 ∘ ) = Tan ( X + 15 ∘ ) 0 < X < 90 ∘ , Find θ. - Mathematics

Advertisements
Advertisements

Question

If \[3\tan\left( x - 15^\circ \right) = \tan\left( x + 15^\circ \right)\] \[0 < x < 90^\circ\], find θ.

Sum

Solution

Given: \[3\tan\left( x - 15^\circ \right) = \tan\left( x + 15^\circ \right)\]
\[\Rightarrow \frac{\tan\left( x + 15^\circ \right)}{\tan\left( x - 15^\circ \right)} = 3\]
Applying componendo and dividendo, we have
\[\frac{\tan\left( x + 15^\circ \right) + \tan\left( x - 15^\circ \right)}{\tan\left( x + 15^\circ \right) - \tan\left( x - 15^\circ \right)} = \frac{3 + 1}{3 - 1}\]
\[ \Rightarrow \frac{\frac{\sin\left( x + 15^\circ \right)}{\cos\left( x + 15^\circ \right)} + \frac{\sin\left( x - 15^\circ \right)}{\cos\left( x - 15^\circ \right)}}{\frac{\sin\left( x + 15^\circ \right)}{\cos\left( x + 15^\circ \right)} - \frac{\sin\left( x - 15^\circ \right)}{\cos\left( x - 15^\circ \right)}} = \frac{4}{2}\]
\[ \Rightarrow \frac{\sin\left( x + 15^\circ \right)\cos\left( x - 15^\circ \right) + \cos\left( x + 15^\circ \right)\sin\left( x - 15^\circ \right)}{\sin\left( x + 15^\circ \right)\cos\left( x - 15^\circ \right) - \cos\left( x + 15^\circ \right)\sin\left( x - 15^\circ \right)} = 2\]
\[ \Rightarrow \frac{\sin\left( x + 15^\circ + x - 15^\circ \right)}{\sin\left( x + 15^\circ- x + 15^\circ \right)} = 2\]

\[\Rightarrow \frac{\sin2x}{\sin30^\circ} = 2\]

\[ \Rightarrow \sin2x = 2 \times \frac{1}{2} = 1 \left( \sin30^\circ = \frac{1}{2} \right)\]

\[ \Rightarrow \sin2x = \sin90^\circ\]

\[ \Rightarrow 2x = 90^\circ \left( 0 < x < 90^\circ \right)\]

\[ \Rightarrow x = 45^\circ\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 11: Trigonometric equations - Exercise 11.2 [Page 26]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 11 Trigonometric equations
Exercise 11.2 | Q 11 | Page 26

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the general solution of the equation cos 3x + cos x – cos 2x = 0


Prove the:
\[ \sqrt{\frac{1 - \sin x}{1 + \sin x}} + \sqrt{\frac{1 + \sin x}{1 - \sin x}} = - \frac{2}{\cos x},\text{ where }\frac{\pi}{2} < x < \pi\]


Prove that: tan (−225°) cot (−405°) −tan (−765°) cot (675°) = 0


Prove that

\[\frac{cosec(90^\circ + x) + \cot(450^\circ + x)}{cosec(90^\circ - x) + \tan(180^\circ - x)} + \frac{\tan(180^\circ + x) + \sec(180^\circ - x)}{\tan(360^\circ + x) - \sec( - x)} = 2\]

 


Prove that

\[\frac{\tan (90^\circ - x) \sec(180^\circ - x) \sin( - x)}{\sin(180^\circ + x) \cot(360^\circ - x) cosec(90^\circ - x)} = 1\]

 


Prove that:
\[\sin^2 \frac{\pi}{18} + \sin^2 \frac{\pi}{9} + \sin^2 \frac{7\pi}{18} + \sin^2 \frac{4\pi}{9} = 2\]

 

Find x from the following equations:
\[x \cot\left( \frac{\pi}{2} + \theta \right) + \tan\left( \frac{\pi}{2} + \theta \right)\sin \theta + cosec\left( \frac{\pi}{2} + \theta \right) = 0\]


Prove that:
\[\sin\frac{13\pi}{3}\sin\frac{8\pi}{3} + \cos\frac{2\pi}{3}\sin\frac{5\pi}{6} = \frac{1}{2}\]


If tan x + sec x = \[\sqrt{3}\], 0 < x < π, then x is equal to


If tan \[x = - \frac{1}{\sqrt{5}}\] and θ lies in the IV quadrant, then the value of cos x is

 

If \[cosec x - \cot x = \frac{1}{2}, 0 < x < \frac{\pi}{2},\]

 

If \[cosec x + \cot x = \frac{11}{2}\], then tan x =

 


If A lies in second quadrant 3tan A + 4 = 0, then the value of 2cot A − 5cosA + sin A is equal to


If \[cosec x + \cot x = \frac{11}{2}\], then tan x =

 


If \[f\left( x \right) = \cos^2 x + \sec^2 x\], then


Find the general solution of the following equation:

\[\sin x = \frac{1}{2}\]

Find the general solution of the following equation:

\[\sqrt{3} \sec x = 2\]

Find the general solution of the following equation:

\[\tan x + \cot 2x = 0\]

Find the general solution of the following equation:

\[\sin 2x + \cos x = 0\]

Find the general solution of the following equation:

\[\sin x = \tan x\]

Find the general solution of the following equation:

\[\sin 3x + \cos 2x = 0\]

Solve the following equation:

\[\cos x + \sin x = \cos 2x + \sin 2x\]

Solve the following equation:

\[\sin x + \cos x = 1\]

Write the set of values of a for which the equation

\[\sqrt{3} \sin x - \cos x = a\] has no solution.

Write the values of x in [0, π] for which \[\sin 2x, \frac{1}{2}\]

 and cos 2x are in A.P.


The number of solution in [0, π/2] of the equation \[\cos 3x \tan 5x = \sin 7x\] is 


The smallest positive angle which satisfies the equation ​

\[2 \sin^2 x + \sqrt{3} \cos x + 1 = 0\] is

If \[\sqrt{3} \cos x + \sin x = \sqrt{2}\] , then general value of x is


General solution of \[\tan 5 x = \cot 2 x\] is


Find the principal solution and general solution of the following:
cot θ = `sqrt(3)`


Find the principal solution and general solution of the following:
tan θ = `- 1/sqrt(3)`


Solve the following equations:
sin 5x − sin x = cos 3


Solve the following equations:
2 cos2θ + 3 sin θ – 3 = θ


Solve the following equations:
`tan theta + tan (theta + pi/3) + tan (theta + (2pi)/3) = sqrt(3)`


In a triangle ABC with ∠C = 90° the equation whose roots are tan A and tan B is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×