English

Prove That: Sin 13 π 3 Sin 8 π 3 + Cos 2 π 3 Sin 5 π 6 = 1 2 - Mathematics

Advertisements
Advertisements

Question

Prove that:
\[\sin\frac{13\pi}{3}\sin\frac{8\pi}{3} + \cos\frac{2\pi}{3}\sin\frac{5\pi}{6} = \frac{1}{2}\]

Solution

\[ \frac{13\pi}{3} = 780^\circ, \frac{8\pi}{3} = 480^\circ, \frac{2\pi}{3} = 120^\circ, \frac{5\pi}{6} = 150^\circ\]

 LHS = \[\sin \left( 780^\circ \right) \sin \left( 480^\circ \right) + \cos \left( 120^\circ \right) \sin\left( 150^\circ \right)\]

\[ = \sin \left( 90^\circ \times 8 + 60^\circ \right) \sin \left( 90^\circ \times 5 + 30^\circ \right) + \cos \left( 90^\circ \times 1 + 30^\circ \right) \sin \left( 90^\circ \times 1 + 60^\circ \right)\]

\[ = \sin \left( 60^\circ \right) \cos \left( 30^\circ \right) + \left[ - \sin \left( 30^\circ \right) \right] \cos \left( 60^\circ \right)\]

\[ = \sin \left( 60^\circ \right) \cos \left( 30^\circ \right) - \sin \left( 30^\circ \right) \cos\left( 60^\circ \right) \]

\[ = \frac{\sqrt{3}}{2} \times \frac{\sqrt{3}}{2} - \frac{1}{2} \times \frac{1}{2}\]

\[ = \frac{3}{4} - \frac{1}{4}\]

\[ = \frac{1}{2}\]

 = RHS

Hence proved.

shaalaa.com
  Is there an error in this question or solution?
Chapter 5: Trigonometric Functions - Exercise 5.3 [Page 40]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 5 Trigonometric Functions
Exercise 5.3 | Q 9.2 | Page 40

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the general solution of the equation cos 3x + cos x – cos 2x = 0


Find the general solution of the equation sin 2x + cos x = 0


Prove the:
\[ \sqrt{\frac{1 - \sin x}{1 + \sin x}} + \sqrt{\frac{1 + \sin x}{1 - \sin x}} = - \frac{2}{\cos x},\text{ where }\frac{\pi}{2} < x < \pi\]


If \[T_n = \sin^n x + \cos^n x\], prove that \[\frac{T_3 - T_5}{T_1} = \frac{T_5 - T_7}{T_3}\]

 


Prove that: tan (−225°) cot (−405°) −tan (−765°) cot (675°) = 0


Prove that

\[\left\{ 1 + \cot x - \sec\left( \frac{\pi}{2} + x \right) \right\}\left\{ 1 + \cot x + \sec\left( \frac{\pi}{2} + x \right) \right\} = 2\cot x\]

 


In a ∆A, B, C, D be the angles of a cyclic quadrilateral, taken in order, prove that cos(180° − A) + cos (180° + B) + cos (180° + C) − sin (90° + D) = 0


Find x from the following equations:
\[cosec\left( \frac{\pi}{2} + \theta \right) + x \cos \theta \cot\left( \frac{\pi}{2} + \theta \right) = \sin\left( \frac{\pi}{2} + \theta \right)\]


Prove that:
\[\sin \frac{13\pi}{3}\sin\frac{2\pi}{3} + \cos\frac{4\pi}{3}\sin\frac{13\pi}{6} = \frac{1}{2}\]


The value of sin25° + sin210° + sin215° + ... + sin285° + sin290° is


If \[cosec x + \cot x = \frac{11}{2}\], then tan x =

 


If sec x + tan x = k, cos x =


If \[f\left( x \right) = \cos^2 x + \sec^2 x\], then


The value of \[\tan1^\circ \tan2^\circ \tan3^\circ . . . \tan89^\circ\] is

 

Find the general solution of the following equation:

\[\sin 9x = \sin x\]

Find the general solution of the following equation:

\[\tan 2x \tan x = 1\]

Find the general solution of the following equation:

\[\sin 2x + \cos x = 0\]

Solve the following equation:

\[\cos 4 x = \cos 2 x\]

Solve the following equation:

\[\cos x \cos 2x \cos 3x = \frac{1}{4}\]

Solve the following equation:

\[\sin 2x - \sin 4x + \sin 6x = 0\]

Solve the following equation:

\[\tan x + \tan 2x = \tan 3x\]

Solve the following equation:
\[\sin x + \cos x = \sqrt{2}\]


Solve the following equation:

`cosec  x = 1 + cot x`


Solve the following equation:
\[\cot x + \tan x = 2\]

 


Write the number of solutions of the equation tan x + sec x = 2 cos x in the interval [0, 2π].


Write the number of values of x in [0, 2π] that satisfy the equation \[\sin x - \cos x = \frac{1}{4}\].


If \[\cos x + \sqrt{3} \sin x = 2,\text{ then }x =\]

 


The general value of x satisfying the equation
\[\sqrt{3} \sin x + \cos x = \sqrt{3}\]


If \[\cot x - \tan x = \sec x\], then, x is equal to

 


General solution of \[\tan 5 x = \cot 2 x\] is


The solution of the equation \[\cos^2 x + \sin x + 1 = 0\] lies in the interval


Find the principal solution and general solution of the following:
cot θ = `sqrt(3)`


Solve the following equations:
sin 5x − sin x = cos 3


Solve the following equations:
2 cos2θ + 3 sin θ – 3 = θ


Solve the following equations:
sin θ + sin 3θ + sin 5θ = 0


Solve the following equations:
`sin theta + sqrt(3) cos theta` = 1


Solve the following equations:
cot θ + cosec θ = `sqrt(3)`


Choose the correct alternative:
If tan α and tan β are the roots of x2 + ax + b = 0 then `(sin(alpha + beta))/(sin alpha sin beta)` is equal to


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×