Advertisements
Advertisements
Question
The value of sin25° + sin210° + sin215° + ... + sin285° + sin290° is
Options
7
8
9.5
10
Solution
9.5
We have:
\[ \sin^2 5^\circ + \sin^2 10^\circ + \sin^2 15^\circ + . . . + \sin^2 85^\circ + \sin^2 90^\circ\]
\[ = \sin^2 5^\circ + \sin^2 10^\circ + \sin^2 15^\circ + . . . + \sin^2 \left( 90^\circ - 10^\circ \right) + \sin^2 \left( 90^\circ - 5^\circ \right) + \sin^2 90^\circ\]
\[ = \sin^2 5^\circ + \sin^2 10^\circ + \sin^2 15^\circ + . . . + \cos^2 10^\circ + \cos^2 5^\circ + \sin^2 90^\circ\]
\[ = \left( \sin^2 5^\circ + \cos^2 5^\circ \right) + \left( \sin^2 10^\circ + \cos^2 10^\circ \right) + + \left( \sin^2 15^\circ + \cos^2 15^\circ \right)\]
\[ + \left( \sin^2 20^\circ + \cos^2 20^\circ \right) + \left( \sin^2 25^\circ + \cos^2 25^\circ \right) + \left( \sin^2 30^\circ + \cos^2 30^\circ \right) \]
\[ + \left( \sin^2 35^\circ + \cos^2 35^\circ \right) + \left( \sin^2 40^\circ + \cos^2 40^\circ \right) + \sin^2 45^\circ + \sin^2 90^\circ\]
\[ = 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + \left( \frac{1}{\sqrt{2}} \right)^2 + \left( 1 \right)^2 \left[ \because \sin^2 \theta + \cos^2 \theta = 1 \right]\]
\[ = 8 + \frac{1}{2} + 1\]
\[ = 9 . 5\]
APPEARS IN
RELATED QUESTIONS
Find the general solution of the equation cos 3x + cos x – cos 2x = 0
Find the general solution of the equation sin x + sin 3x + sin 5x = 0
Prove that: cos 24° + cos 55° + cos 125° + cos 204° + cos 300° = \[\frac{1}{2}\]
Prove that:
Prove that
In a ∆ABC, prove that:
cos (A + B) + cos C = 0
In a ∆A, B, C, D be the angles of a cyclic quadrilateral, taken in order, prove that cos(180° − A) + cos (180° + B) + cos (180° + C) − sin (90° + D) = 0
Prove that:
\[\tan 4\pi - \cos\frac{3\pi}{2} - \sin\frac{5\pi}{6}\cos\frac{2\pi}{3} = \frac{1}{4}\]
Prove that:
\[\sin \frac{13\pi}{3}\sin\frac{2\pi}{3} + \cos\frac{4\pi}{3}\sin\frac{13\pi}{6} = \frac{1}{2}\]
If sec \[x = x + \frac{1}{4x}\], then sec x + tan x =
If \[\frac{3\pi}{4} < \alpha < \pi, \text{ then }\sqrt{2\cot \alpha + \frac{1}{\sin^2 \alpha}}\] is equal to
If x is an acute angle and \[\tan x = \frac{1}{\sqrt{7}}\], then the value of \[\frac{{cosec}^2 x - \sec^2 x}{{cosec}^2 x + \sec^2 x}\] is
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
sin x tan x – 1 = tan x – sin x
Solve the following equation:
\[2^{\sin^2 x} + 2^{\cos^2 x} = 2\sqrt{2}\]
Write the number of solutions of the equation
\[4 \sin x - 3 \cos x = 7\]
Write the number of points of intersection of the curves
Write the number of values of x in [0, 2π] that satisfy the equation \[\sin x - \cos x = \frac{1}{4}\].
A solution of the equation \[\cos^2 x + \sin x + 1 = 0\], lies in the interval
The smallest positive angle which satisfies the equation
If \[4 \sin^2 x = 1\], then the values of x are
The number of values of x in [0, 2π] that satisfy the equation \[\sin^2 x - \cos x = \frac{1}{4}\]
If \[e^{\sin x} - e^{- \sin x} - 4 = 0\], then x =
Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°
2 cos2x + 1 = – 3 cos x
Solve the following equations:
sin θ + cos θ = `sqrt(2)`
Solve the following equations:
cot θ + cosec θ = `sqrt(3)`
Solve the following equations:
cos 2θ = `(sqrt(5) + 1)/4`
Choose the correct alternative:
If cos pθ + cos qθ = 0 and if p ≠ q, then θ is equal to (n is any integer)
Choose the correct alternative:
`(cos 6x + 6 cos 4x + 15cos x + 10)/(cos 5x + 5cs 3x + 10 cos x)` is equal to
Find the general solution of the equation 5cos2θ + 7sin2θ – 6 = 0