English

The Value of Sin25° + Sin210° + Sin215° + ... + Sin285° + Sin290° is - Mathematics

Advertisements
Advertisements

Question

The value of sin25° + sin210° + sin215° + ... + sin285° + sin290° is

Options

  • 7

  • 8

  • 9.5

  • 10

MCQ

Solution

9.5

We have: 

\[ \sin^2 5^\circ + \sin^2 10^\circ + \sin^2 15^\circ + . . . + \sin^2 85^\circ + \sin^2 90^\circ\]

\[ = \sin^2 5^\circ + \sin^2 10^\circ + \sin^2 15^\circ + . . . + \sin^2 \left( 90^\circ - 10^\circ \right) + \sin^2 \left( 90^\circ - 5^\circ \right) + \sin^2 90^\circ\]

\[ = \sin^2 5^\circ + \sin^2 10^\circ + \sin^2 15^\circ + . . . + \cos^2 10^\circ + \cos^2 5^\circ + \sin^2 90^\circ\]

\[ = \left( \sin^2 5^\circ + \cos^2 5^\circ \right) + \left( \sin^2 10^\circ + \cos^2 10^\circ \right) + + \left( \sin^2 15^\circ + \cos^2 15^\circ \right)\]

\[ + \left( \sin^2 20^\circ + \cos^2 20^\circ \right) + \left( \sin^2 25^\circ + \cos^2 25^\circ \right) + \left( \sin^2 30^\circ + \cos^2 30^\circ \right) \]

\[ + \left( \sin^2 35^\circ + \cos^2 35^\circ \right) + \left( \sin^2 40^\circ + \cos^2 40^\circ \right) + \sin^2 45^\circ + \sin^2 90^\circ\]

\[ = 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + \left( \frac{1}{\sqrt{2}} \right)^2 + \left( 1 \right)^2 \left[ \because \sin^2 \theta + \cos^2 \theta = 1 \right]\]

\[ = 8 + \frac{1}{2} + 1\]

\[ = 9 . 5\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 5: Trigonometric Functions - Exercise 5.5 [Page 42]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 5 Trigonometric Functions
Exercise 5.5 | Q 16 | Page 42

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the general solution of the equation cos 3x + cos x – cos 2x = 0


Find the general solution of the equation  sin x + sin 3x + sin 5x = 0


Prove that: cos 24° + cos 55° + cos 125° + cos 204° + cos 300° = \[\frac{1}{2}\]


Prove that:

\[3\sin\frac{\pi}{6}\sec\frac{\pi}{3} - 4\sin\frac{5\pi}{6}\cot\frac{\pi}{4} = 1\]

 


Prove that

\[\frac{\tan (90^\circ - x) \sec(180^\circ - x) \sin( - x)}{\sin(180^\circ + x) \cot(360^\circ - x) cosec(90^\circ - x)} = 1\]

 


In a ∆ABC, prove that:
cos (A + B) + cos C = 0


In a ∆A, B, C, D be the angles of a cyclic quadrilateral, taken in order, prove that cos(180° − A) + cos (180° + B) + cos (180° + C) − sin (90° + D) = 0


Prove that:
\[\tan 4\pi - \cos\frac{3\pi}{2} - \sin\frac{5\pi}{6}\cos\frac{2\pi}{3} = \frac{1}{4}\]


Prove that:
\[\sin \frac{13\pi}{3}\sin\frac{2\pi}{3} + \cos\frac{4\pi}{3}\sin\frac{13\pi}{6} = \frac{1}{2}\]


If sec \[x = x + \frac{1}{4x}\], then sec x + tan x = 

 

If \[\frac{3\pi}{4} < \alpha < \pi, \text{ then }\sqrt{2\cot \alpha + \frac{1}{\sin^2 \alpha}}\] is equal to


If x is an acute angle and \[\tan x = \frac{1}{\sqrt{7}}\], then the value of \[\frac{{cosec}^2 x - \sec^2 x}{{cosec}^2 x + \sec^2 x}\] is


Find the general solution of the following equation:

\[\sec x = \sqrt{2}\]

Find the general solution of the following equation:

\[\sin 2x = \frac{\sqrt{3}}{2}\]

Find the general solution of the following equation:

\[\sin 9x = \sin x\]

Find the general solution of the following equation:

\[\tan x + \cot 2x = 0\]

Find the general solution of the following equation:

\[\sin x = \tan x\]

Find the general solution of the following equation:

\[\sin 3x + \cos 2x = 0\]

Solve the following equation:

\[2 \sin^2 x + \sqrt{3} \cos x + 1 = 0\]

Solve the following equation:

\[\sin x + \cos x = 1\]

Solve the following equation:
 sin x tan x – 1 = tan x – sin x

 


Solve the following equation:
\[2^{\sin^2 x} + 2^{\cos^2 x} = 2\sqrt{2}\]


Write the number of solutions of the equation
\[4 \sin x - 3 \cos x = 7\]


Write the number of points of intersection of the curves

\[2y = - 1 \text{ and }y = cosec x\]

Write the number of values of x in [0, 2π] that satisfy the equation \[\sin x - \cos x = \frac{1}{4}\].


A solution of the equation \[\cos^2 x + \sin x + 1 = 0\], lies in the interval


The smallest positive angle which satisfies the equation ​

\[2 \sin^2 x + \sqrt{3} \cos x + 1 = 0\] is

If \[4 \sin^2 x = 1\], then the values of x are

 


The number of values of ​x in [0, 2π] that satisfy the equation \[\sin^2 x - \cos x = \frac{1}{4}\]


If \[e^{\sin x} - e^{- \sin x} - 4 = 0\], then x =


Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°

2 cos2x + 1 = – 3 cos x


Solve the following equations:
sin θ + cos θ = `sqrt(2)`


Solve the following equations:
cot θ + cosec θ = `sqrt(3)`


Solve the following equations:
cos 2θ = `(sqrt(5) + 1)/4`


Choose the correct alternative:
If cos pθ + cos qθ = 0 and if p ≠ q, then θ is equal to (n is any integer)


Choose the correct alternative:
`(cos 6x + 6 cos 4x + 15cos x + 10)/(cos 5x + 5cs 3x + 10 cos x)` is equal to


Find the general solution of the equation 5cos2θ + 7sin2θ – 6 = 0


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×