Advertisements
Advertisements
Question
If x is an acute angle and \[\tan x = \frac{1}{\sqrt{7}}\], then the value of \[\frac{{cosec}^2 x - \sec^2 x}{{cosec}^2 x + \sec^2 x}\] is
Options
3/4
1/2
2
5/4
Solution
3/4
We have:
\[\tan x = \frac{1}{\sqrt{7}}\]
\[ \therefore \tan^2 x = \frac{1}{7}\]
Now, dividing the numerator and the denominator of \[\frac{{cosec}^2 x - \sec^2 x}{{cosec}^2 x + \sec^2 x}\text{ by }{cosec}^2 x:\]
\[\frac{1 - \tan^2 x}{1 + \tan^2 x}\]
\[ = \frac{1 - \frac{1}{7}}{1 + \frac{1}{7}}\]
\[ = \frac{6}{8} = \frac{3}{4}\]
APPEARS IN
RELATED QUESTIONS
Find the principal and general solutions of the equation sec x = 2
Find the principal and general solutions of the equation `cot x = -sqrt3`
Find the general solution of cosec x = –2
If \[a = \sec x - \tan x \text{ and }b = cosec x + \cot x\], then shown that \[ab + a - b + 1 = 0\]
If \[T_n = \sin^n x + \cos^n x\], prove that \[2 T_6 - 3 T_4 + 1 = 0\]
Prove that:
Prove that: tan (−225°) cot (−405°) −tan (−765°) cot (675°) = 0
Prove that:
\[\sin^2 \frac{\pi}{18} + \sin^2 \frac{\pi}{9} + \sin^2 \frac{7\pi}{18} + \sin^2 \frac{4\pi}{9} = 2\]
In a ∆ABC, prove that:
Prove that:
\[\sin\frac{13\pi}{3}\sin\frac{8\pi}{3} + \cos\frac{2\pi}{3}\sin\frac{5\pi}{6} = \frac{1}{2}\]
Prove that:
\[\sin \frac{13\pi}{3}\sin\frac{2\pi}{3} + \cos\frac{4\pi}{3}\sin\frac{13\pi}{6} = \frac{1}{2}\]
Prove that:
If \[\frac{\pi}{2} < x < \frac{3\pi}{2},\text{ then }\sqrt{\frac{1 - \sin x}{1 + \sin x}}\] is equal to
If x = r sin θ cos ϕ, y = r sin θ sin ϕ and z = r cos θ, then x2 + y2 + z2 is independent of
If \[cosec x + \cot x = \frac{11}{2}\], then tan x =
Which of the following is correct?
Find the general solution of the following equation:
Find the general solution of the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
\[5 \cos^2 x + 7 \sin^2 x - 6 = 0\]
Solve the following equation:
cosx + sin x = cos 2x + sin 2x
Write the solution set of the equation
If \[2 \sin^2 x = 3\cos x\]. where \[0 \leq x \leq 2\pi\], then find the value of x.
The smallest value of x satisfying the equation
If \[\tan px - \tan qx = 0\], then the values of θ form a series in
If a is any real number, the number of roots of \[\cot x - \tan x = a\] in the first quadrant is (are).
The number of solution in [0, π/2] of the equation \[\cos 3x \tan 5x = \sin 7x\] is
A value of x satisfying \[\cos x + \sqrt{3} \sin x = 2\] is
If \[\cos x = - \frac{1}{2}\] and 0 < x < 2\pi, then the solutions are
Find the principal solution and general solution of the following:
cot θ = `sqrt(3)`
If a cosθ + b sinθ = m and a sinθ - b cosθ = n, then show that a2 + b2 = m2 + n2
If 2sin2θ = 3cosθ, where 0 ≤ θ ≤ 2π, then find the value of θ.
Find the general solution of the equation 5cos2θ + 7sin2θ – 6 = 0
Find the general solution of the equation sinx – 3sin2x + sin3x = cosx – 3cos2x + cos3x
In a triangle ABC with ∠C = 90° the equation whose roots are tan A and tan B is ______.