Advertisements
Advertisements
Question
Prove that:
Solution
\[ \frac{10\pi}{3} = 600^\circ, \frac{13\pi}{6} = 390^\circ, \frac{8\pi}{3} = 480^\circ, \frac{5\pi}{6} = 150^\circ\]
LHS = \[\sin 600^\circ\cos 390^\circ + \cos 480^\circ \sin 150^\circ\]
\[ = \sin \left( 90^\circ \times 6 + 60^\circ \right) \cos\left( 90^\circ \times 4 + 30^\circ \right) + \cos\left( 90^\circ \times 5 + 30^\circ \right) \sin\left( 90^\circ \times 1 + 60^\circ \right)\]
\[ = \left[ - \sin 60^\circ \right] \cos30^\circ + \left[ - \sin 30^\circ \right] \cos 60^\circ\]
\[ = - \sin 60^\circ \cos\left( 30^\circ \right) - \sin 30^\circ \cos 60^\circ\]
\[ = - \frac{\sqrt{3}}{2} \times \frac{\sqrt{3}}{2} - \frac{1}{2} \times \frac{1}{2}\]
\[ = - \frac{3}{4} - \frac{1}{4}\]
\[ = - 1\]
= RHS
Hence proved.
APPEARS IN
RELATED QUESTIONS
Find the general solution of the equation cos 4 x = cos 2 x
Find the general solution of the equation cos 3x + cos x – cos 2x = 0
Find the general solution for each of the following equations sec2 2x = 1– tan 2x
Prove that: tan (−225°) cot (−405°) −tan (−765°) cot (675°) = 0
Prove that:
\[\frac{\cos (2\pi + x) cosec (2\pi + x) \tan (\pi/2 + x)}{\sec(\pi/2 + x)\cos x \cot(\pi + x)} = 1\]
Prove that:
\[\sin^2 \frac{\pi}{18} + \sin^2 \frac{\pi}{9} + \sin^2 \frac{7\pi}{18} + \sin^2 \frac{4\pi}{9} = 2\]
Prove that:
If tan x = \[x - \frac{1}{4x}\], then sec x − tan x is equal to
If \[\frac{\pi}{2} < x < \pi, \text{ then }\sqrt{\frac{1 - \sin x}{1 + \sin x}} + \sqrt{\frac{1 + \sin x}{1 - \sin x}}\] is equal to
If \[\frac{3\pi}{4} < \alpha < \pi, \text{ then }\sqrt{2\cot \alpha + \frac{1}{\sin^2 \alpha}}\] is equal to
The value of sin25° + sin210° + sin215° + ... + sin285° + sin290° is
If sec x + tan x = k, cos x =
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
\[2 \sin^2 x = 3\cos x, 0 \leq x \leq 2\pi\]
Solve the following equation:
\[\sec x\cos5x + 1 = 0, 0 < x < \frac{\pi}{2}\]
Solve the following equation:
4sinx cosx + 2 sin x + 2 cosx + 1 = 0
Solve the following equation:
3sin2x – 5 sin x cos x + 8 cos2 x = 2
Write the number of points of intersection of the curves
Write the number of values of x in [0, 2π] that satisfy the equation \[\sin x - \cos x = \frac{1}{4}\].
The smallest value of x satisfying the equation
The number of solution in [0, π/2] of the equation \[\cos 3x \tan 5x = \sin 7x\] is
The general value of x satisfying the equation
\[\sqrt{3} \sin x + \cos x = \sqrt{3}\]
If \[4 \sin^2 x = 1\], then the values of x are
The number of values of x in [0, 2π] that satisfy the equation \[\sin^2 x - \cos x = \frac{1}{4}\]
If \[e^{\sin x} - e^{- \sin x} - 4 = 0\], then x =
If \[\cos x = - \frac{1}{2}\] and 0 < x < 2\pi, then the solutions are
Find the principal solution and general solution of the following:
sin θ = `-1/sqrt(2)`
Solve the following equations:
2 cos2θ + 3 sin θ – 3 = θ
Solve the following equations:
sin θ + cos θ = `sqrt(2)`
Choose the correct alternative:
If cos pθ + cos qθ = 0 and if p ≠ q, then θ is equal to (n is any integer)
Choose the correct alternative:
If tan α and tan β are the roots of x2 + ax + b = 0 then `(sin(alpha + beta))/(sin alpha sin beta)` is equal to