Advertisements
Advertisements
Question
Find the general solution for each of the following equations sec2 2x = 1– tan 2x
Solution
APPEARS IN
RELATED QUESTIONS
If \[cosec x - \sin x = a^3 , \sec x - \cos x = b^3\], then prove that \[a^2 b^2 \left( a^2 + b^2 \right) = 1\]
If \[T_n = \sin^n x + \cos^n x\], prove that \[2 T_6 - 3 T_4 + 1 = 0\]
Prove that:
Prove that: cos 24° + cos 55° + cos 125° + cos 204° + cos 300° = \[\frac{1}{2}\]
Prove that:
\[\sin^2 \frac{\pi}{18} + \sin^2 \frac{\pi}{9} + \sin^2 \frac{7\pi}{18} + \sin^2 \frac{4\pi}{9} = 2\]
In a ∆ABC, prove that:
Prove that:
\[\sin\frac{13\pi}{3}\sin\frac{8\pi}{3} + \cos\frac{2\pi}{3}\sin\frac{5\pi}{6} = \frac{1}{2}\]
If \[\frac{\pi}{2} < x < \frac{3\pi}{2},\text{ then }\sqrt{\frac{1 - \sin x}{1 + \sin x}}\] is equal to
If \[\frac{\pi}{2} < x < \pi, \text{ then }\sqrt{\frac{1 - \sin x}{1 + \sin x}} + \sqrt{\frac{1 + \sin x}{1 - \sin x}}\] is equal to
If tan A + cot A = 4, then tan4 A + cot4 A is equal to
The value of \[\tan1^\circ \tan2^\circ \tan3^\circ . . . \tan89^\circ\] is
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
\[\sec x\cos5x + 1 = 0, 0 < x < \frac{\pi}{2}\]
Solve the following equation:
4sinx cosx + 2 sin x + 2 cosx + 1 = 0
If cos x = k has exactly one solution in [0, 2π], then write the values(s) of k.
If \[2 \sin^2 x = 3\cos x\]. where \[0 \leq x \leq 2\pi\], then find the value of x.
If \[4 \sin^2 x = 1\], then the values of x are
A value of x satisfying \[\cos x + \sqrt{3} \sin x = 2\] is
General solution of \[\tan 5 x = \cot 2 x\] is
Find the principal solution and general solution of the following:
sin θ = `-1/sqrt(2)`
Solve the following equations:
sin 5x − sin x = cos 3
Solve the following equations:
sin θ + sin 3θ + sin 5θ = 0
Solve the following equations:
`tan theta + tan (theta + pi/3) + tan (theta + (2pi)/3) = sqrt(3)`
Choose the correct alternative:
If sin α + cos α = b, then sin 2α is equal to
Solve the equation sin θ + sin 3θ + sin 5θ = 0
Solve 2 tan2x + sec2x = 2 for 0 ≤ x ≤ 2π.
Solve `sqrt(3)` cos θ + sin θ = `sqrt(2)`
Number of solutions of the equation tan x + sec x = 2 cosx lying in the interval [0, 2π] is ______.
In a triangle ABC with ∠C = 90° the equation whose roots are tan A and tan B is ______.