Advertisements
Advertisements
Question
Solve `sqrt(3)` cos θ + sin θ = `sqrt(2)`
Solution
Divide the given equation by 2 to get
`sqrt(3)/2 cos theta + 1/2 sin theta = 1/sqrt(2)`
or `cos pi/6 cos theta + sin pi/6 sin theta = cos pi/4`
or `cos(pi/6 - theta) = cos pi/4` or `cos(theta - pi/6) = cos pi/4`
Thus, the solution is given by, i.e., θ = `2 m pi +- pi/4 + pi/6`
Hence, the solution is
θ = `2 m pi + pi/4 + pi/6` and `2 m pi - pi/4 + pi/6,` i.e., `theta = 2 m pi + (5pi)/12` and `theta = 2 m pi - pi / 12`
APPEARS IN
RELATED QUESTIONS
If \[\sin x = \frac{a^2 - b^2}{a^2 + b^2}\], then the values of tan x, sec x and cosec x
If \[cosec x - \sin x = a^3 , \sec x - \cos x = b^3\], then prove that \[a^2 b^2 \left( a^2 + b^2 \right) = 1\]
Prove the:
\[ \sqrt{\frac{1 - \sin x}{1 + \sin x}} + \sqrt{\frac{1 + \sin x}{1 - \sin x}} = - \frac{2}{\cos x},\text{ where }\frac{\pi}{2} < x < \pi\]
If \[T_n = \sin^n x + \cos^n x\], prove that \[\frac{T_3 - T_5}{T_1} = \frac{T_5 - T_7}{T_3}\]
If \[T_n = \sin^n x + \cos^n x\], prove that \[2 T_6 - 3 T_4 + 1 = 0\]
Prove that: tan (−225°) cot (−405°) −tan (−765°) cot (675°) = 0
In a ∆ABC, prove that:
cos (A + B) + cos C = 0
In a ∆ABC, prove that:
If tan x + sec x = \[\sqrt{3}\], 0 < x < π, then x is equal to
If \[\frac{3\pi}{4} < \alpha < \pi, \text{ then }\sqrt{2\cot \alpha + \frac{1}{\sin^2 \alpha}}\] is equal to
If \[cosec x - \cot x = \frac{1}{2}, 0 < x < \frac{\pi}{2},\]
If x sin 45° cos2 60° = \[\frac{\tan^2 60^\circ cosec30^\circ}{\sec45^\circ \cot^{2^\circ} 30^\circ}\], then x =
If sec x + tan x = k, cos x =
The value of \[\cos1^\circ \cos2^\circ \cos3^\circ . . . \cos179^\circ\] is
Find the general solution of the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
`cosec x = 1 + cot x`
Solve the following equation:
cosx + sin x = cos 2x + sin 2x
If secx cos5x + 1 = 0, where \[0 < x \leq \frac{\pi}{2}\], find the value of x.
If \[e^{\sin x} - e^{- \sin x} - 4 = 0\], then x =
The solution of the equation \[\cos^2 x + \sin x + 1 = 0\] lies in the interval
Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°
2 sin2x + 1 = 3 sin x
Solve the following equations:
`sin theta + sqrt(3) cos theta` = 1
Choose the correct alternative:
If cos pθ + cos qθ = 0 and if p ≠ q, then θ is equal to (n is any integer)