Advertisements
Advertisements
Question
The value of \[\cos1^\circ \cos2^\circ \cos3^\circ . . . \cos179^\circ\] is
Options
- \[\frac{1}{\sqrt{2}}\]
0
1
-1
Solution
\[\cos1^\circ \cos2^\circ \cos3^\circ . . . \cos179^\circ\]
\[ = \cos1^\circ \cos2^\circ \cos3^\circ . . . \cos90^\circ . . . \cos179^\circ\]
\[ = 0 \left( \cos90^\circ = 0 \right)\]
Hence, the correct answer is option 0.
APPEARS IN
RELATED QUESTIONS
Find the principal and general solutions of the equation `tan x = sqrt3`
Find the principal and general solutions of the equation sec x = 2
Find the general solution of cosec x = –2
If \[\tan x = \frac{b}{a}\] , then find the values of \[\sqrt{\frac{a + b}{a - b}} + \sqrt{\frac{a - b}{a + b}}\].
If \[cosec x - \sin x = a^3 , \sec x - \cos x = b^3\], then prove that \[a^2 b^2 \left( a^2 + b^2 \right) = 1\]
If \[T_n = \sin^n x + \cos^n x\], prove that \[6 T_{10} - 15 T_8 + 10 T_6 - 1 = 0\]
Prove that: tan 225° cot 405° + tan 765° cot 675° = 0
Prove that:
Prove that:
\[\frac{\cos (2\pi + x) cosec (2\pi + x) \tan (\pi/2 + x)}{\sec(\pi/2 + x)\cos x \cot(\pi + x)} = 1\]
In a ∆ABC, prove that:
cos (A + B) + cos C = 0
In a ∆ABC, prove that:
Prove that:
\[\sin\frac{13\pi}{3}\sin\frac{8\pi}{3} + \cos\frac{2\pi}{3}\sin\frac{5\pi}{6} = \frac{1}{2}\]
If tan x + sec x = \[\sqrt{3}\], 0 < x < π, then x is equal to
If x is an acute angle and \[\tan x = \frac{1}{\sqrt{7}}\], then the value of \[\frac{{cosec}^2 x - \sec^2 x}{{cosec}^2 x + \sec^2 x}\] is
If A lies in second quadrant 3tan A + 4 = 0, then the value of 2cot A − 5cosA + sin A is equal to
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
cosx + sin x = cos 2x + sin 2x
Solve the following equation:
sin x tan x – 1 = tan x – sin x
Write the number of values of x in [0, 2π] that satisfy the equation \[\sin x - \cos x = \frac{1}{4}\].
The smallest value of x satisfying the equation
If \[\tan px - \tan qx = 0\], then the values of θ form a series in
If \[\sqrt{3} \cos x + \sin x = \sqrt{2}\] , then general value of x is
The number of values of x in the interval [0, 5 π] satisfying the equation \[3 \sin^2 x - 7 \sin x + 2 = 0\] is
Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°
sin4x = sin2x
Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°
cos 2x = 1 − 3 sin x
Solve the following equations:
2 cos2θ + 3 sin θ – 3 = θ
Solve the following equations:
cot θ + cosec θ = `sqrt(3)`
Solve the following equations:
cos 2θ = `(sqrt(5) + 1)/4`
Choose the correct alternative:
If tan α and tan β are the roots of x2 + ax + b = 0 then `(sin(alpha + beta))/(sin alpha sin beta)` is equal to
In a triangle ABC with ∠C = 90° the equation whose roots are tan A and tan B is ______.