Advertisements
Advertisements
Question
Solve the following equation:
sin x tan x – 1 = tan x – sin x
Solution
\[\sin x \tan x - 1 = \tan x - \sin x\]
\[ \Rightarrow \sin x \tan x - \tan x + \sin x - 1 = 0\]
\[ \Rightarrow \tan x\left( \sin x - 1 \right) + 1\left( \sin x - 1 \right) = 0\]
\[ \Rightarrow \left( \tan x + 1 \right)\left( \sin x - 1 \right) = 0\]
\[ \Rightarrow \left( \tan x + 1 \right) = 0\text{ or }\left( \sin x - 1 \right) = 0\]
\[ \Rightarrow \tan x = - 1\text{ or }\sin x = 1\]
\[ \Rightarrow \tan x = \tan\frac{3\pi}{4}\text{ or }\sin x = \sin\frac{\pi}{2}\]
\[ \Rightarrow x = n\pi + \frac{3\pi}{4}\text{ or }x = n\pi + \left( - 1 \right)^n \frac{\pi}{2}, n \in \mathbb{Z}\]
APPEARS IN
RELATED QUESTIONS
Find the general solution of the equation sin 2x + cos x = 0
If \[\tan x = \frac{b}{a}\] , then find the values of \[\sqrt{\frac{a + b}{a - b}} + \sqrt{\frac{a - b}{a + b}}\].
If \[T_n = \sin^n x + \cos^n x\], prove that \[6 T_{10} - 15 T_8 + 10 T_6 - 1 = 0\]
Prove that
Find x from the following equations:
\[cosec\left( \frac{\pi}{2} + \theta \right) + x \cos \theta \cot\left( \frac{\pi}{2} + \theta \right) = \sin\left( \frac{\pi}{2} + \theta \right)\]
If tan x + sec x = \[\sqrt{3}\], 0 < x < π, then x is equal to
If \[cosec x - \cot x = \frac{1}{2}, 0 < x < \frac{\pi}{2},\]
If \[cosec x + \cot x = \frac{11}{2}\], then tan x =
If A lies in second quadrant 3tan A + 4 = 0, then the value of 2cot A − 5cosA + sin A is equal to
If \[cosec x + \cot x = \frac{11}{2}\], then tan x =
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
\[\cot x + \tan x = 2\]
Write the number of solutions of the equation tan x + sec x = 2 cos x in the interval [0, 2π].
Write the general solutions of tan2 2x = 1.
Write the set of values of a for which the equation
Write the number of values of x in [0, 2π] that satisfy the equation \[\sin x - \cos x = \frac{1}{4}\].
A solution of the equation \[\cos^2 x + \sin x + 1 = 0\], lies in the interval
The number of solution in [0, π/2] of the equation \[\cos 3x \tan 5x = \sin 7x\] is
A value of x satisfying \[\cos x + \sqrt{3} \sin x = 2\] is
The number of values of x in the interval [0, 5 π] satisfying the equation \[3 \sin^2 x - 7 \sin x + 2 = 0\] is
Find the principal solution and general solution of the following:
sin θ = `-1/sqrt(2)`
Solve the following equations:
2 cos2θ + 3 sin θ – 3 = θ
Solve the following equations:
`tan theta + tan (theta + pi/3) + tan (theta + (2pi)/3) = sqrt(3)`
Solve the following equations:
cos 2θ = `(sqrt(5) + 1)/4`
Solve the following equations:
2cos 2x – 7 cos x + 3 = 0
Choose the correct alternative:
If cos pθ + cos qθ = 0 and if p ≠ q, then θ is equal to (n is any integer)
Find the general solution of the equation 5cos2θ + 7sin2θ – 6 = 0