English

Prove that { 1 + Cot X − Sec ( π 2 + X ) } { 1 + Cot X + Sec ( π 2 + X ) } = 2 Cot X - Mathematics

Advertisements
Advertisements

Question

Prove that

\[\left\{ 1 + \cot x - \sec\left( \frac{\pi}{2} + x \right) \right\}\left\{ 1 + \cot x + \sec\left( \frac{\pi}{2} + x \right) \right\} = 2\cot x\]

 

Solution

LHS =\[ \left\{ 1 + \cot x - \sec\left( \frac{\pi}{2} + x \right) \right\}\left\{ 1 + \cot x + \sec\left( \frac{\pi}{2} + x \right) \right\}\]
\[ = \left[ 1 + \cot x - \left\{ - cosec x \right\} \right]\left[ 1 + \cot x + \left\{ - cosec x \right\} \right] \]
\[ = \left[ 1 + \cot x + cosec x \right] \left[ 1 + \cot x - cosec x \right]\]
\[ = \left[ 1 + \cot x + cosec x \right] \left[ 1 + \cot x - cosec x \right]\]
\[ = \left[ \left\{ 1 + \cot\left( x \right) \right\} + \left\{ cosec x \right\} \right] \left[ \left\{ 1 + \cot x \right\} - \left\{ cosec x \right\} \right]\]
\[ = \left\{ 1 + \cot x \right\}^2 - \left\{ cosec x \right\}^2 \]
\[= 1 + \cot^2 x + 2\cot x - {cosec}^2 x\]
\[ = 2 \cot x \left[ \because 1 + \cot^2 x = {cosec}^2 x \right]\]
 = RHS 
Hence proved.

shaalaa.com
  Is there an error in this question or solution?
Chapter 5: Trigonometric Functions - Exercise 5.3 [Page 39]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 5 Trigonometric Functions
Exercise 5.3 | Q 3.4 | Page 39

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the principal and general solutions of the equation `tan x = sqrt3`


Find the principal and general solutions of the equation sec x = 2


Find the principal and general solutions of the equation  `cot x = -sqrt3`


Find the general solution for each of the following equations sec2 2x = 1– tan 2x


If \[\tan x = \frac{b}{a}\] , then find the values of \[\sqrt{\frac{a + b}{a - b}} + \sqrt{\frac{a - b}{a + b}}\].


If \[cosec x - \sin x = a^3 , \sec x - \cos x = b^3\], then prove that \[a^2 b^2 \left( a^2 + b^2 \right) = 1\]


If \[\cot x \left( 1 + \sin x \right) = 4 m \text{ and }\cot x \left( 1 - \sin x \right) = 4 n,\] \[\left( m^2 + n^2 \right)^2 = mn\]


If \[T_n = \sin^n x + \cos^n x\], prove that  \[2 T_6 - 3 T_4 + 1 = 0\]


Prove that

\[\frac{\sin(180^\circ + x) \cos(90^\circ + x) \tan(270^\circ - x) \cot(360^\circ - x)}{\sin(360^\circ - x) \cos(360^\circ + x) cosec( - x) \sin(270^\circ + x)} = 1\]

 


If \[\frac{\pi}{2} < x < \frac{3\pi}{2},\text{ then }\sqrt{\frac{1 - \sin x}{1 + \sin x}}\] is equal to

 


If \[\frac{\pi}{2} < x < \pi, \text{ then }\sqrt{\frac{1 - \sin x}{1 + \sin x}} + \sqrt{\frac{1 + \sin x}{1 - \sin x}}\] is equal to


If x = r sin θ cos ϕ, y = r sin θ sin ϕ and r cos θ, then x2 + y2 + z2 is independent of


sin2 π/18 + sin2 π/9 + sin2 7π/18 + sin2 4π/9 =


If tan A + cot A = 4, then tan4 A + cot4 A is equal to


The value of \[\cos1^\circ \cos2^\circ \cos3^\circ . . . \cos179^\circ\] is

 

Find the general solution of the following equation:

\[\sin x = \frac{1}{2}\]

Find the general solution of the following equation:

\[\tan x + \cot 2x = 0\]

Find the general solution of the following equation:

\[\tan 3x = \cot x\]

Solve the following equation:

\[\cos x + \sin x = \cos 2x + \sin 2x\]

Solve the following equation:

\[\sin x + \sin 2x + \sin 3 = 0\]

Solve the following equation:

\[\sin 2x - \sin 4x + \sin 6x = 0\]

Solve the following equation:

\[\tan x + \tan 2x + \tan 3x = 0\]

Solve the following equation:

\[\tan 3x + \tan x = 2\tan 2x\]

Solve the following equation:

\[\sin x + \cos x = 1\]

Write the number of solutions of the equation tan x + sec x = 2 cos x in the interval [0, 2π].


Write the values of x in [0, π] for which \[\sin 2x, \frac{1}{2}\]

 and cos 2x are in A.P.


If \[2 \sin^2 x = 3\cos x\]. where \[0 \leq x \leq 2\pi\], then find the value of x.


The general solution of the equation \[7 \cos^2 x + 3 \sin^2 x = 4\] is


The smallest positive angle which satisfies the equation ​

\[2 \sin^2 x + \sqrt{3} \cos x + 1 = 0\] is

If \[4 \sin^2 x = 1\], then the values of x are

 


The equation \[3 \cos x + 4 \sin x = 6\] has .... solution.


Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°

sin4x = sin2x


Solve the following equations:
sin θ + cos θ = `sqrt(2)`


Solve the following equations:
`sin theta + sqrt(3) cos theta` = 1


Solve the following equations:
cos 2θ = `(sqrt(5) + 1)/4`


Choose the correct alternative:
`(cos 6x + 6 cos 4x + 15cos x + 10)/(cos 5x + 5cs 3x + 10 cos x)` is equal to


Choose the correct alternative:
If sin α + cos α = b, then sin 2α is equal to


Solve 2 tan2x + sec2x = 2 for 0 ≤ x ≤ 2π.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×